\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{B-model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{second_quantization__effective_background_field_theory}{Second quantization / effective background field theory}\dotfill \pageref*{second_quantization__effective_background_field_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesBCOV}{Second quantization to Kodeira-Spencer gravity}\dotfill \pageref*{ReferencesBCOV} \linebreak \noindent\hyperlink{computation_via_topological_recursion}{Computation via topological recursion}\dotfill \pageref*{computation_via_topological_recursion} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Witten introduced two topological twists of a supersymmetric nonlinear [[sigma model]], which is a certain N=2 superconformal field theory attached to a compact [[Calabi?Yau variety]] $X$. One of them is the \emph{B-model} [[topological string]]; it is a 2-dimensional [[topological conformal field theory|topological N=1 superconformal field theory]]. In Kontsevich's version, instead of SCFT with Hilbert space, one assembles all the needed data in terms of [[Calabi-Yau category|Calabi?Yau A-infinity-category]] which is the A-infinity-category of coherent sheaves on the underlying variety. In fact only the structure of a derived category is sufficient (and usually quoted): it is now known (by the results of [[Dmitri Orlov]] and [[Valery Lunts]]) that under mild assumptions on the variety, a derived category of coherent sheaves has a unique [[enhanced triangulated category|enhancement]]. The B-model arose in considerations of [[string theory|superstring]]-propagation on Calabi--Yau varieties: it may be motivated by considering the [[vertex operator algebra]] of the 2d[[CFT|SCFT]] given by the N=2 supersymmetric nonlinear [[sigma-model]] with target $X$ and then changing the fields so that one of the super-[[Virasoro algebra|Virasoro]] generators squares to 0. The resulting ``topologically twisted'' algebra may then be read as being the [[BRST complex]] of a [[TCFT]]. One can also define a B-model for [[Landau-Ginzburg model|Landau?Ginzburg models]]. The category of [[D-brane|D-branes]] for the string -- the [[B-branes]] -- is given by the category of [[matrix factorization|matrix factorizations]] (this was proposed by Kontsevich and elaborated by Kapustin-Li; see also papers of Orlov). For the genus 0 closed string theory, see the work of Saito. By [[homological mirror symmetry]], the B-model is dual to the [[A-model]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{second_quantization__effective_background_field_theory}{}\subsubsection*{{Second quantization / effective background field theory}}\label{second_quantization__effective_background_field_theory} The [[second quantization]] [[effective field theory]] defined by the [[perturbation series]] of the B-model is supposed to be ``Kodaira-Spencer gravity'' / ``BVOC theory'' in 6d (\hyperlink{BCOV93}{BCOV 93}, \hyperlink{CostelloLi12}{Costello-Li 12}, \hyperlink{CostelloLi15}{Costello-Li 15}). For more on this see at \emph{\href{http://ncatlab.org/nlab/show/TCFT#ActionFunctionals}{TCFT -- Worldsheet and effective background theories}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[schreiber:∞-Chern-Simons theory]] \item [[sigma-model]] \begin{itemize}% \item [[AKSZ sigma-model]] \begin{itemize}% \item [[Poisson sigma-model]] \begin{itemize}% \item [[A-model]], \textbf{B-model} \item [[half-twisted model]] \end{itemize} \item [[Courant sigma-model]] \begin{itemize}% \item [[Chern-Simons theory]] \end{itemize} \end{itemize} \item [[topological membrane]] \end{itemize} \item [[topologically twisted D=4 super Yang-Mills theory]] \item [[Landau-Ginzburg model]] \end{itemize} [[!include gauge theory from AdS-CFT -- table]] \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The B-model was first conceived in \begin{itemize}% \item [[Edward Witten]], \emph{Topological sigma models}, Commun. Math. Phys. \textbf{118} (1988) 411--449, \href{http://projecteuclid.org/euclid.cmp/1104162092}{euclid}, \href{http://www.ams.org/mathscinet-getitem?mr=0958805}{MR90b:81080} \end{itemize} An early review is in \begin{itemize}% \item [[Edward Witten]]. \emph{Mirror manifolds and topological field theory}, in: Essays on mirror manifolds, pp. 120---158. Int. Press, Hong Kong, 1992. (\href{http://arxiv.org/abs/hep-th/9112056}{arXiv:hep-th/9112056}). \end{itemize} The motivation from the point of view of [[string theory]] with an eye towards the appearance of the Calabi-Yau categories is reviewed for instance in \begin{itemize}% \item [[Paul Aspinwall]], \emph{D-Branes on Calabi-Yau Manifolds} (\href{http://arxiv.org/abs/hep-th/0403166}{arXiv:hep-th/0403166}) \end{itemize} A summary of these two reviews is in \begin{itemize}% \item H. Lee, \emph{Review of topological field theory and homological mirror symmetry} (\href{http://people.maths.ox.ac.uk/leeh/files/CYMSmini.pdf}{pdf}) \end{itemize} That the B-model [[Lagrangian]] arises in [[AKSZ theory]] by [[gauge fixing]] the [[Poisson sigma-model]] was observed in \begin{itemize}% \item M. Alexandrov, [[Maxim Kontsevich|M. Kontsevich]], [[Albert Schwarz|A. Schwarz]], O. Zaboronsky, around page 28 in \emph{The geometry of the master equation and topological quantum field theory}, Int. J. Modern Phys. A 12(7):1405--1429, 1997 \end{itemize} For survey of the literature see also \begin{itemize}% \item [[Kevin H. Lin]], MO comment on \emph{\href{http://mathoverflow.net/a/9748/381}{Matrix factorization and physics}, 2009} \end{itemize} The B-model on [[genus]]-0 [[cobordism]]s had been constructed in \begin{itemize}% \item S. Barannikov, [[Maxim Kontsevich]], \emph{Frobenius manifolds and formality of Lie algebras of polyvector fields} , Internat. Math. Res. Notices 1998, no. 4, 201--215; \href{http://arxiv.org/abs/alg-geom/9710032}{math.QA/9710032} \href{http://dx.doi.org/10.1155/S1073792898000166}{doi} \end{itemize} The construction of the B-model as a [[TCFT]] on [[cobordisms]] of arbitrary [[genus]] was given in \begin{itemize}% \item [[Kevin Costello]], \emph{The Gromov-Witten potential associated to a TCFT} (\href{http://arxiv.org/abs/math/0509264}{math.QA/0509264}) \end{itemize} See also the MathOverflow discussion: \href{http://mathoverflow.net/questions/8692/higher-genus-closed-string-b-model}{higher-genus-closed-string-b-model} \hypertarget{ReferencesBCOV}{}\subsubsection*{{Second quantization to Kodeira-Spencer gravity}}\label{ReferencesBCOV} The [[second quantization]] [[effective field theory|effective]] field theory defined by the B-model [[perturbation series]] (``Kodeira-Spencer gravity''/``BCOV theory'') is discussed in Discussion of how the [[second quantization]] of the [[B-model]] yields [[Kodeira-Spencer gravity]]/[[BCOV theory]] is in \begin{itemize}% \item M. Bershadsky, S. Cecotti, [[Hirosi Ooguri]], [[Cumrun Vafa]], \emph{Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes}, Commun.Math.Phys.165:311-428,1994 (\href{http://arxiv.org/abs/hep-th/9309140}{arXiv:hep-th/9309140}) \item [[Kevin Costello]], Si Li, \emph{Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model} (\href{http://arxiv.org/abs/1201.4501}{arXiv:1201.4501}) \item Si Li, \emph{BCOV theory on the elliptic curve and higher genus mirror symmetry} (\href{http://arxiv.org/abs/1112.4063}{arXiv:1112.4063}) \item Si Li, \emph{Variation of Hodge structures, Frobenius manifolds and Gauge theory} (\href{http://arxiv.org/abs/1303.2782}{arXiv:1303.2782}) \item [[Kevin Costello]], Si Li, \emph{Quantization of open-closed BCOV theory, I} (\href{http://arxiv.org/abs/1505.06703}{arXiv:1505.06703}) \end{itemize} \hypertarget{computation_via_topological_recursion}{}\subsubsection*{{Computation via topological recursion}}\label{computation_via_topological_recursion} Computation via [[topological recursion]] in [[matrix models]] and all-[[genus of a surface|genus]] proofs of [[mirror symmetry]] is due to \begin{itemize}% \item [[Vincent Bouchard]], [[Albrecht Klemm]], [[Marcos Marino]], [[Sara Pasquetti]], \emph{Remodeling the B-model}, Commun.Math.Phys.287:117-178, 2009 (\href{https://arxiv.org/abs/0709.1453}{arXiv:0709.1453}) \item [[Bertrand Eynard]], [[Amir-Kian Kashani-Poor]], Olivier Marchal, \emph{A matrix model for the topological string I: Deriving the matrix model} (\href{https://arxiv.org/abs/1003.1737}{arXiv:1003.1737}) \item [[Bertrand Eynard]], [[Amir-Kian Kashani-Poor]], Olivier Marchal, \emph{A matrix model for the topological string II: The spectral curve and mirror geometry} (\href{https://arxiv.org/abs/1007.2194}{arXiv:1007.2194}) \item [[Bertrand Eynard]], [[Nicolas Orantin]], \emph{Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture} (\href{https://arxiv.org/abs/1205.1103}{arXiv:1205.1103}) \item Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, \emph{All Genus Open-Closed Mirror Symmetry for Affine Toric Calabi-Yau 3-Orbifolds} (\href{https://arxiv.org/abs/1310.4818}{arXiv:1310.4818}) \end{itemize} [[!redirects Kodeira-Spencer gravity]] [[!redirects BCOV theory]] [[!redirects B-models]] \end{document}