\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{BDR 2-vector bundle} \begin{quote}% under construction for the moment this here are nothing but rough notes taken in a talk long ago \end{quote} \emph{BDR 2-vector bundles} are a notion of [[categorified]] [[vector bundle]] motivated by the concept of \href{http://ncatlab.org/nlab/show/2-vector+space#KV2VectorSpace}{Kapranov-Voevodsy's 2-vector spaces}. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{2vector_bundles_following_baasdundasrognes}{2-Vector bundles following Baas-Dundas-Rognes}\dotfill \pageref*{2vector_bundles_following_baasdundasrognes} \linebreak \noindent\hyperlink{the_homotopy_type_of_the_classifying_space}{The homotopy type of the classifying space}\dotfill \pageref*{the_homotopy_type_of_the_classifying_space} \linebreak \noindent\hyperlink{_as_a_form_of_elliptic_cohomology}{$K(ku)$ as a form of elliptic cohomology}\dotfill \pageref*{_as_a_form_of_elliptic_cohomology} \linebreak \noindent\hyperlink{from_gerbes_to_2vector_bundles}{From gerbes to 2-vector bundles}\dotfill \pageref*{from_gerbes_to_2vector_bundles} \linebreak \noindent\hyperlink{2K-theory}{2K-theory of bimonoidal categories}\dotfill \pageref*{2K-theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{2vector_bundles_following_baasdundasrognes}{}\subsection*{{2-Vector bundles following Baas-Dundas-Rognes}}\label{2vector_bundles_following_baasdundasrognes} We are looking for a generalization of the notion of [[vector bundle]] in [[higher category theory]]. Let $X$ be a [[topological space]] and $\{U_\alpha \to X\}_{\alpha \in A}$ an [[open cover]], where the index set $A$ is assumed to be a [[poset]]. Defition. A \textbf{charted 2-vector bundle} (i.e. a [[cocycle]] for a BDR 2-vector bundle) of rank $n$ is \begin{itemize}% \item for $\alpha \lt \beta \in A$ on $U_\alpha \cap U_\beta =: U_{\alpha\beta}$ a matrix $(E^{\alpha\beta}_{i j})_{i,j = 1}^{n}$ of [[vector bundle]]s $E^{\alpha \beta}_{i j} \to U_{\alpha \beta}$ such that the determinant of the underlying matrix of dimensions is $det(dim(E^{\alpha \beta}_{i j})) = \pm 1$. \item on triple overlaps $U_{\alpha \beta \gamma}$ for $\alpha \lt \beta \lt \gamma \in A$ we have [[isomorphism]]s \begin{displaymath} \phi^{\alpha \beta \gamma} : \oplus_{j} E^{\alpha \beta}_{i j} \otimes E^{\beta \gamma}_{j k} \stackrel{\simeq}{\to} E^{\alpha \gamma}_{i k} \end{displaymath} \item such that the $\phi$ satisfy on quadruple overlaps the evident cocycle condition (as described at [[gerbe]] and [[principal 2-bundle]]). \end{itemize} Next we need to define morphisms of such charted 2-vector bundles. These involve the evident refinements of covers and fiberwise transformations. Write $2Vect(X)$ for the equivalence classes of charted 2-vector bundles under these morphisms. \textbf{Remark} If we restrict attention to $n = 1$ then this gives the same as $U(1)$-gerbes/[[bundle gerbe]]s. \textbf{Theorem} (Baas-Dundas-Rognes) There exists a [[classifying space]] $\mathcal{K}(V)$ such that for $X$ a finite [[CW-complex]] there is an [[isomorphism]] \begin{displaymath} [X, \mathcal{K}(V)] = {\lim_\to}_{a : Y \to X} Gr(2Vect(Y)) \end{displaymath} between [[homotopy]] classes of continuous maps $X \to \mathcal{K}(V)$ and equivalence classes of the group completed [[infinity-stackification|stackification]] of 2-vector bundles, where the [[colimit]] is over acyclic [[Serre fibration]]s (Note: these are not acyclic fibrations in the usual sense, rather their fibres have trivial integral [[homology]]) and $Gr(-)$ indicates the [[Grothendieck group]] completion using the monoid structure arising from the direct sum of 2-vector bundles. \textbf{Proof} In BDR, Segal Birthday Proceedings \textbf{Note} $2Vect_n(X) = [X, |B Gl_n (V)| ]$. BDR called $\mathcal{K}(V)$ the \textbf{2-K-theory} of the [[bimonoidal category]] of [[Kapranov-Voevodsky 2-vector space]]s. \hypertarget{the_homotopy_type_of_the_classifying_space}{}\subsection*{{The homotopy type of the classifying space}}\label{the_homotopy_type_of_the_classifying_space} \textbf{Theorem} (Baas-Dundas-Rognes-Richter) $\mathcal{K}(V) \simeq K(ku)$ Here: \begin{itemize}% \item $ku$ is the connected version of the [[spectrum]] of complex [[topological K-theory]]; \item $K(-)$ denotes forming the [[algebraic K-theory]] spectrum of [[ring spectrum|ring spectra]]. \end{itemize} So by the general formula for [[algebraic K-theory]] for [[ring spectrum|ring spectra]], this is \begin{displaymath} K(ku) \simeq \mathbb{Z} \times B Gl(ku)^+ \, \end{displaymath} Some flavor of $\mathcal{K}(V)$. \begin{itemize}% \item $V$ is the (a [[skeleton]] of the [[core]] of) of [[category]] of complex [[vector space]]s. \begin{itemize}% \item [[object]]s are [[natural number]]s, $n$ corresponding to $\mathbb{C}^n$; \item [[morphism]]s are $Hom(k,k) = GL(k)$ and there are no morphisms between different $k,l$. \end{itemize} \end{itemize} This category $V$ is naturally a [[bimonoidal category]] under [[coproduct]] and [[tensor product]] of [[vector space]]s. K-theory is about understanding linear algebra on a ring, so we want to understand the linear algebra of this [[monoidal category]]. We write $Mat_n(V)$ for the $n \times n$ matrices of linear isomorphisms between finite dimensional vector spaces. Such matrices can be multiplied using the usual formula for matrix products on the [[tensor product]] and [[direct sum]] of vector space and linear maps. Write $Gl_n(V)$ for the subcollection of those matrices for which the determinant of their matrix of dimensions is $\pm 1$. Now define \begin{displaymath} \mathcal{K}(V) = \Omega B (\coprod_{n \geq 0} B Gl_n (V)) \,. \end{displaymath} Notice that this is a direct generalization of the corresponding formula for the algebraic K-theory of a ring $R$, \begin{displaymath} K(R) = \Omega B (\coprod_{n \geq 0} B Gl(R)) \,. \end{displaymath} \hypertarget{_as_a_form_of_elliptic_cohomology}{}\subsection*{{$K(ku)$ as a form of elliptic cohomology}}\label{_as_a_form_of_elliptic_cohomology} Ausoni and Rognes compute the [[homology]] groups (for a certain sense of homology) of $K(ku)$. take rational homotopy \begin{itemize}% \item $H^*(-, \mathbb{Q})$ for $p$ a [[prime]], multiplying by $p$ gives an isomorphism on this. p = $\nu_0$ \item Let $KU^*(-)$ be complex oriented [[topological K-theory]], then \begin{displaymath} KU_* = \mathbb{Z}[u^{\pm 1}] \end{displaymath} for $|u| = 2$ (the [[Bott class]]) we have that multiplying by $u$ is an isomorphism and $u^{p-1} = \nu_1$ \end{itemize} The $\nu_i$ come from the [[Brown-Peterson spectrum]] $B P$ and $\pi_* BP = \mathbb{Z}_{(p)}[\nu_1, \nu_2, \cdots]$ motto: the higher the $\nu_i$ the more you detect. Christian Ausoni figured out something that implies that ``$K(ku)$ detects as much in the [[stable homotopy category]] as any other form of [[elliptic cohomology]].'' \hypertarget{from_gerbes_to_2vector_bundles}{}\subsection*{{From gerbes to 2-vector bundles}}\label{from_gerbes_to_2vector_bundles} It is hard to directly construct charted 2-vector bundles. We have more examples of [[gerbe]]s. So we want to get one from the other. \textbf{Example} We have \begin{displaymath} \mathbb{S}^1 = \mathbb{C}P^1 \subset \mathbb{C}P^\infty = B U(1) = K(\mathbb{Z},2) \end{displaymath} (see [[Eilenberg-MacLane space]] and [[classifying space]]) \begin{displaymath} \mathbb{S}^3 = \Sigma \mathbb{S}^2 \to \Sigma B U(1) \subset \Sigma B U \to B B U_{\otimes} \subset units(ku) \to B GL(ku) \end{displaymath} using $\Sigma B U(1) \to B BU(1) \to B B U_{\otimes}$ we can take a $U(1)$-[[gerbe]] classified by maps into $B^2 U(1)$ and induce from it the associated 2-vector bundle. the canonical map \begin{displaymath} \mathbb{S}^3 \to K(\mathbb{Z},3) \end{displaymath} may be thought of as classifying the gerbe called the [[magnetic monopole]]-gerbe Postcomposing with $\mu : K(\mathbb{Z},3) \to K(ku)$ we have Fact: $\mu$ gives a generator in $\pi_3 K(\mathbb{Z},3) = H^3(\mathbb{S}^3)$ \textbf{Theorem} (Ausoni-Dundas-Rognes) \begin{displaymath} j(\mu) = 2 \zeta - \nu \end{displaymath} in $\pi_3(K(ku))$ so regarded as a 2-vector bundle $\mu$ is not a generator. ADR: $\zeta$ is ``half a monopole''. \begin{displaymath} \pi_3(K(ku)) = \mathbb{Z} \oplus \mathbb{Z}/24 \mathbb{Z} \end{displaymath} (the first summand is $\zeta$, the second $\nu$). Thomas Krogh has an [[orientation]] theory for 2-vector bundles which says that $j(\nu)$ is not orientable. \hypertarget{2K-theory}{}\subsection*{{2K-theory of bimonoidal categories}}\label{2K-theory} Let $(R, \oplus, \otimes, 0,1, c_{\oplus})$ be a [[bimonoidal category]], i.e. a [[categorification|categorified]] [[rig]]. This can be broken down as \begin{enumerate}% \item $(R, \oplus, 0 , c_{\oplus})$ a permutative category, a categorified abelian [[monoid]]; \item $(R , \otimes, 1)$ is a [[monoidal category]], assumed to be \emph{strict} monidal in the following; \item a distributivity law. \end{enumerate} \textbf{Examples} \begin{enumerate}% \item $E = Core$[[FinSet]], the [[core]] of the category of finite sets and morphisms only between sets of the same cardinality. In the [[skeleton]], objects are [[natural number]]s $n \in \mathb{N}$, $\oplus$ and $\otimes$ is addition and multiplication on $\mathbb{N}$, respectively. Here $c_{\oplus}$ is the evident natural [[isomorphism]] between direct sums of finite sets. \item $V = Core$[[Vect]] the [[core]] of the category of finite dim vector spaces, with morphisms only between those of the same dimension. \item \ldots{} \end{enumerate} \textbf{Definition} For $R$ a bimonoidal category, write $Mat_n(R)$ for the $n \times n$ matrices with entries morphisms in $R$. Then matrix multiplication is defined using the bimonoidal structure on $R$. This gives a weak [[monoid]] structure. Let $Gl_n(R)$ be the category of weakly invertible such matrices. This is the [[full subcategory]] of $Mat_n(R)$. We get a diagram of [[pullback]] squares \begin{displaymath} \itexarray{ Gl_n(R) &\hookrightarrow& Mat_n(R) \\ \downarrow && \downarrow \\ Gl_n(\pi_0(R))&\to& Mat_n(\pi_0(R)) \\ \downarrow && \downarrow \\ Gl_n(Gr(\pi_0(R)))&\to& Mat_n(Gr(\pi_0(R))) } \,, \end{displaymath} where $Gr(-)$ denotes [[Grothendieck group]]-completion. \textbf{Definition} (Baas-Dundas-Rognes, 2004) For $R$ a [[bimonoidal category]], the \textbf{2K-theory} of $R$ is \begin{displaymath} \mathcal{K}(R) := \Omega B \coprod_{n \geq 0} | B Gl_n(R) | \end{displaymath} where the $\Omega$ is forming [[loop space]], the leftmost $B$ is forming classifying space of a category and the inner $B$ is a flabby version of classifying space of a category. This can also be written \begin{displaymath} \cdots \simeq \mathbb{Z} \times |B Gl_n(R)|^+ \,. \end{displaymath} Here $B_q Gl_n(R)$ is a [[simplicial category]] \ldots{} \textbf{Theorem} (Baas-Dundas-Rognes) Let $R$ be a [[small category|small]] [[Top]]-[[enriched category|enriched]] [[bimonoidal category]] such that \begin{enumerate}% \item $R$ is a [[groupoid]]; \item for all $X \in R$ we have that $X \oplus (-)$ is [[faithful functor|faithful]]. \end{enumerate} Then $\mathcal{K}(R) \simeq K(H R)$ is the ordinary [[algebraic K-theory]] of the [[ring spectrum]] $H R$. Notice that for $H R$ to be a spectrum we only need the additive structure $(R, \oplus, 0, c_{\oplus})$. The point is that the other monoidal structure $\otimes$ indeed makes this a [[ring spectrum]]. This is a not completely trivial statement due to a bunch of people, involving [[Peter May]] and Elmendorf-Mandell (2006). \textbf{Examples} \begin{enumerate}% \item For the category $R := E = Core(FinSet)$ of finite sets as above we have that $H E$ is the [[sphere spectrum]]. \item For $R := V = Core(FinVect)$ the core of complex finite dimensional vector spaces we have $H V$ is the complex [[K-theory spectrum]]. \item For $V_{\mathbb{R}}$ analogously we get the real K-theory spectrum. \end{enumerate} So by the above theorem \begin{enumerate}% \item $\mathcal{K}(E) \simeq K(S) \simeq A(*)$ \item $\mathcal{K}(V) \simeq K(ku)$; \item etc. \end{enumerate} \textbf{Remarks} \begin{enumerate}% \item A. Osono: The equivalence $\mathcal{K}(R) \simeq K(H R)$ of [[topological space]]s is even an equivalence of [[infinity loop space]]s; \item Application of that: a) for $E$ a [[ring spectrum]]: find a model \begin{displaymath} E \simeq H R(R) \end{displaymath} and use the equivalence $\mathbb{K}(R) \simeq K(H R E)$ to understand \emph{arithmetic} properties of $E$. b) Often one knows $K(H(R))$ via calculations. here $\mathcal{K}(R)$ might help to get some deeper understanding. c) Theorem ([[Birgit Richter]]): for $R$ a bimonoidal category with anti-involution, then you get an involution of $\mathcal{K}(R)$. \end{enumerate} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[red-shift conjecture]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The original articles on BDR 2-vector bundles are \begin{itemize}% \item [[Nils Baas]], [[Ian Dundas]], [[John Rognes]], \emph{Two-vector bundles and forms of elliptic cohomology}, in: \emph{Topology, geometry and quantum field theory}, volume 308 of London Math. Soc. Lecture Note Ser., pages 18--45. Cambridge Univ. Press, Cambridge, (2004). \end{itemize} Their [[classifying spaces]] are discussed in \begin{itemize}% \item [[Nils Baas]], [[Ian Dundas]], [[Birgit Richter]], [[John Rognes]], \emph{Ring completion of rig categories} (\href{http://arxiv.org/abs/0706.0531}{arXiv:0706.0531}) (a previous version of this carried the title \emph{Two-vector bundles define a form of elliptic cohomology}) \item [[Nils Baas]], M. B\"o{}ckstedt, [[Tore Kro]], \emph{Two-Categorical Bundles and Their Classifying Spaces} (2008) (\href{http://arxiv.org/abs/math/0612549}{arXiv:math/0612549}), . \end{itemize} Divisibility of the gerbe on the 3-sphere, seen as a 2-vector bundle is in \begin{itemize}% \item Christian Ausoni, Bjorn Ian Dundas and John Rognes, \emph{Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere}, Doc. Math. 13, 795-801 (2008). (\href{http://www.math.univ-paris13.fr/~ausoni/papers/ADR08.pdf}{pdf}) \end{itemize} Orientation of BDR 2-vector bundles is discussed in \begin{itemize}% \item Thomas Kragh, \emph{Orientations and Connective Structures on 2-vector Bundles} Mathematica Scandinavica, 113 (2013) no 1, (\href{http://www.mscand.dk/article/view/15482}{journal}), (\href{http://arxiv.org/abs/0910.0131}{arXiv:0910.0131}) \end{itemize} [[!redirects BDR 2-vector bundles]] \end{document}