\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{BLG model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_lagrangian}{The Lagrangian}\dotfill \pageref*{the_lagrangian} \linebreak \noindent\hyperlink{boundary_conditions}{Boundary conditions}\dotfill \pageref*{boundary_conditions} \linebreak \noindent\hyperlink{3AlgebraStructure}{The ``$3$-algebra'' structure}\dotfill \pageref*{3AlgebraStructure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The BLG model is a 3-dimensional [[SCFT]] involving a [[Chern-Simons theory]] coupled to matter. It is argued to be the [[worldvolume]] theory of 2 coincident [[black brane|black]] [[M2-branes]] with 16 manifest [[supersymmetries]]. The generalization to an arbitrary number of M2-branes is supposed to be given by the [[ABJM model]]. [[!include 7d spherical space forms -- table]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_lagrangian}{}\subsubsection*{{The Lagrangian}}\label{the_lagrangian} (\ldots{}) \hypertarget{boundary_conditions}{}\subsubsection*{{Boundary conditions}}\label{boundary_conditions} Discussion of [[boundary conditions]] of the BLG model, leading to [[brane intersection]] with [[M-wave]], [[M5-brane]] and [[MO9-brane]] is in (\hyperlink{ChuSmith09}{Chu-Smith 09}, \hyperlink{BPST09}{BPST 09}). \hypertarget{3AlgebraStructure}{}\subsubsection*{{The ``$3$-algebra'' structure}}\label{3AlgebraStructure} The BLG model Lagrangian involves a trilinear operation on the scalar fields $\phi \in V$ \begin{displaymath} [-,-,-] : V^{\otimes 3} \to V \,. \end{displaymath} Moreover, the [[supersymmetry]] of the Lagrangian hinges on the fact that this map satisfies a condition that has some similarity to a [[Jacobi identity]] for the binary operation on a [[Lie algebra]]. Therefore, superficially, it looks like this might be the trinary bracket on an \emph{[[L-∞ algebra]]} structure on the space $V$. On the one hand, indeed, by the discussion at \emph{[[supergravity C-field]]} , the M2-brane is charged under a [[circle n-bundle with connection|circle 3-bundle with connection]] whose [[higher gauge theory]] is controled by [[Lie n-algebra|Lie 3-algebra]]s in direct analogy to how the [[higher gauge theory]] of the [[string]] is controled by [[gerbes]]/[[principal 2-bundles]] and their [[Lie 2-algebra]]s and that of charged [[particles]] by ordinary [[Lie algebra]]s. Apparantly motivated by an intuition along these lines, (\hyperlink{BaggerLambert}{BaggerLambert}) named $(V,[-,-,-])$ a \textbf{3-algebra}. This terminology was picked up by many authors In the process, it transmuted sometimes to ``3-Lie algebra'' and sometimes even to ``Lie 3-algebra''. Unfortunately, the Bagger-Lambert ``3-algebra'' is \textbf{not} a \emph{[[Lie n-algebra|Lie 3-algebra]]} in the established sense of an [[L-∞ algebra]] structure on a [[graded vector space]] $V$ concentrated in the lowest three degrees. At least not without some modifications in the interpretation of the map $[-,-,-]$. The reason is that for the notion of an [[L-∞ algebra]] (as discussed there) it is crucial that $V$ is a $\mathbb{N}$-graded (or $\mathbb{Z}$-graded) vector space and that the $n$-ary brackets respect the degree in a certain way. But in the \hyperlink{BaggerLamber}{BaggerLambert}-proposal, $V$ is all concentrated in a single degree (is regarded as ungraded). One immediately finds that in this case the $L_\infty$-respect of $[-,-,-]$ for the grading would imply that $V$ is taken to be in degree $1/2$. Since this is not in $\mathbb{N}$, it does not yield an $L_\infty$-algebra. Notice that the $\mathbb{N}$-grading (or $\mathbb{Z}$-grading) of $L_\infty$-algebras is crucial for the [[homotopy theory|homotopy theoretic]] interpretation of [[L-∞ algebra]]s as higher Lie algebras. None of the good theory of $L_\infty$-algebras survives when this grading is dropped. This grading has its origin in the [[Dold-Kan correspondence]], which establishes integral graded homological structures as models for structures in [[higher category theory]]. Notably, a higher Lie algebra is supposed to have a [[Lie integration]] to a [[smooth ∞-groupoid|smooth $n$-groupoid]]. Under this process, the elements in degree $k$ of the higher Lie algebra become tangents to the space of [[k-morphisms]] of this smooth $n$-groupoid. Clearly, here only integer $k$ do make sense. On the other hand, it is of course possible to consider the structure on ``$L_\infty$-algebras without grading'', even if these will not have a good theory. This notion has once been introduced by Filippov (Sib. Math. Zh. No 6 126--140 (195)) under the term \emph{[[n-Lie algebra]]} . Beware, therefore, that the innocent-looking difference between the terms \begin{itemize}% \item [[Lie n-algebra]] \item [[n-Lie algebra]] \end{itemize} corresponds, unfortunately, to a major difference in the behaviour of the concepts behind these terms. In conclusion, it is clear that 2-brane physics is governed by Lie 3-algebraic structures, but it is not yet clear how the trinary operation highlighted by \hyperlink{BaggerLambert}{BaggerLambert} would be an example. In view of this it might be noteworthy that the equivalent reformulation and generalization of the BLG model by the [[ABJM model]] does not involve any ``3-algebras'' at all. In fact at least most of the ``3-algebras'' appearing in the membrane literature may be understood as being data of a plain [[Lie algebra]] with an invariant product and a representation (\hyperlink{MFMR}{MFMR 08}). These authors summarize the state of affiars on p. 3 as \begin{quote}% All this prompts one to question whether the 3-algebras appearing in the constructions 1--3,10,11 play a fundamental role in M-theory or, at least insofar as the effective field theory is concerned, are largely superfluous. The equivalence of 10 and 6 and the abundance of new theories (dual to known M-theory backgrounds) which seem not to involve a 3-algebra might suggest the latter. Nonetheless, given our lack of understanding of how to incorporate in Lie-algebraic terms the expected properties of M-theoretic degrees of freedom, like the entropy scaling laws for M2- and M5-brane condensates, it may be useful to understand the precise relation between the 3-algebras appearing in the recent literature on superconformal Chern--Simons theory and Lie algebras. \end{quote} The article (\hyperlink{MFMR}{MFMR 08}) provides this relation and under this relation the ``3-algebraic'' BLG model has then been understood as a special case of the ordinary Lie algebraic [[ABJM theory]]. A review is in (\hyperlink{BaggerLambert12}{Bagger-Lambert 12}). It has also been suggested that ``3-algebras'' are to be interpreted in \textbf{[[n-plectic geometry|2-plectic structure]]} (\hyperlink{SaemannSzabo}{Saemann-Szabo}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[ABJM theory]] \item [[membrane matrix model]] \end{itemize} [[!include superconformal symmetry -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Precursors: \begin{itemize}% \item [[John Schwarz]], \emph{Superconformal Chern-Simons Theories} (\href{https://arxiv.org/abs/hep-th/0411077}{arXiv:arXiv:hep-th/0411077} \end{itemize} The original articles are \begin{itemize}% \item [[Jonathan Bagger]], [[Neil Lambert]], \emph{Modeling Multiple M2's}, Phys. Rev. D75, 045020 (2007). (\href{http://arxiv.org/abs/hep-th/0611108}{hep-th/0611108}). \item [[Jonathan Bagger]], [[Neil Lambert]], Phys. Rev. D77, 065008 (2008). (\href{http://arXiv.org/abs/0711.0955}{arXiv:0711.0955}). \end{itemize} and concerning the ``3-algebra''-structure also \begin{itemize}% \item [[Andreas Gustavsson]], Nucl. Phys. B811, 66-76 (2009). arXiv:0709.1260. \end{itemize} The interpretation in terms of branes at a $\mathbb{Z}/2$-[[ADE-singularities]] with [[discrete torsion]] in the [[supergravity C-field]] is due to \begin{itemize}% \item [[Neil Lambert]], [[David Tong]], \emph{Membranes on an Orbifold}, Phys.Rev.Lett.101:041602, 2008 (\href{https://arxiv.org/abs/0804.1114}{arXiv:0804.1114}) \item [[Jacques Distler]], [[Sunil Mukhi]], [[Constantinos Papageorgakis]], [[Mark Van Raamsdonk]], \emph{M2-branes on M-folds}, JHEP 0805:038,2008 (\href{https://arxiv.org/abs/0804.1256}{arXiv:0804.1256}) \end{itemize} A comprehensive review is in \begin{itemize}% \item [[Jonathan Bagger]], [[Neil Lambert]], Sunil Mukhi, Constantinos Papageorgakis, \emph{Multiple Membranes in M-theory} (\href{http://arxiv.org/abs/1203.3546}{arXiv:1203.3546}) \end{itemize} and a review talk is \begin{itemize}% \item [[Neil Lambert]], \emph{M-Branes: Lessons from M2’s and Hopes for M5’s}, talk at \emph{\href{http://www.maths.dur.ac.uk/lms/109/index.html}{Higher Structures in M-Theory, Durham, August 2018}} (\href{http://www.maths.dur.ac.uk/lms/109/talks/1877lambert.pdf}{pdf slides}, \href{http://www.maths.dur.ac.uk/lms/109/movies/1877lamb.mp4}{video recording}) \end{itemize} Discussion of [[boundary conditions]] leading to [[brane intersection]] with [[M-wave]], [[M5-brane]] and [[MO9-brane]] is in \begin{itemize}% \item [[Chong-Sun Chu]], Douglas J. Smith, \emph{Multiple Self-Dual Strings on M5-Branes}, JHEP 1001:001, 2010 (\href{https://arxiv.org/abs/0909.2333}{arXiv:0909.2333}) \item [[David Berman]], Malcolm J. Perry, [[Ergin Sezgin]], Daniel C. Thompson, \emph{Boundary Conditions for Interacting Membranes}, JHEP 1004:025, 2010 (\href{https://arxiv.org/abs/0912.3504}{arXiv:0912.3504}) \end{itemize} Discussion in [[Horava-Witten theory]] reducing M2-branes to [[heterotic strings]] is in \begin{itemize}% \item [[Neil Lambert]], \emph{Heterotic M2-branes} (\href{http://arxiv.org/abs/1507.07931}{arXiv:1507.07931}) \end{itemize} The interpretation of at least most of the ``3-algebra'' appearing in the membrane literature in terms of plain [[Lie algebras]] is due to \begin{itemize}% \item Paul de Medeiros, [[José Figueroa-O'Farrill]], Elena M\'e{}ndez-Escobar, Patricia Ritter, \emph{On the Lie-algebraic origin of metric 3-algebras}, Commun.Math.Phys.290:871-902,2009 (\href{http://arxiv.org/abs/0809.1086}{arXiv:0809.1086}) \end{itemize} See also \begin{itemize}% \item [[José Figueroa-O'Farrill]], section \emph{Triple systems and Lie superalgebras} in \emph{M2-branes, ADE and Lie superalgebras}, talk at IPMU 2009 (\href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/Hongo.pdf}{pdf}) \end{itemize} The suggestion that BGL ``3-algebras'' are to be interpreted in [[2-plectic geometry]] appears in \begin{itemize}% \item [[Christian Saemann]], [[Richard Szabo]], \emph{Quantization of 2-Plectic Manifolds} (\href{http://arxiv.org/abs/1106.1890}{arXiv:1106.1890}) \end{itemize} [[!redirects BLG-model]] \end{document}