\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{BPS state} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{General}{General}\dotfill \pageref*{General} \linebreak \noindent\hyperlink{in_supergravity}{In supergravity}\dotfill \pageref*{in_supergravity} \linebreak \noindent\hyperlink{in_superstring_theory}{In superstring theory}\dotfill \pageref*{in_superstring_theory} \linebreak \noindent\hyperlink{InTermsOfHigherDifferentialGeometry}{Formalization in higher differential geometry}\dotfill \pageref*{InTermsOfHigherDifferentialGeometry} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_11d_supergravity}{In 11d Supergravity}\dotfill \pageref*{in_11d_supergravity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{IntroductoryReferences}{Introductions, surveys and lectures}\dotfill \pageref*{IntroductoryReferences} \linebreak \noindent\hyperlink{in_supergravity_2}{In supergravity}\dotfill \pageref*{in_supergravity_2} \linebreak \noindent\hyperlink{SpectralNetworksReferences}{Spectral networks}\dotfill \pageref*{SpectralNetworksReferences} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{General}{}\subsubsection*{{General}}\label{General} In [[supersymmetry|supersymmetric]] [[quantum field theory]] with [[extended supersymmetry]], certain extremal [[supermultiplets]] have some of the [[supersymmetry|supersymmetries]] retained (have 0-[[eigenvalue]] under some of the [[supersymmetry]] generators). These are called \textbf{Bogomol'nyi--Prasad--Sommerfield saturated solutions}. More in detail, where in a plain [[supersymmetry]] [[super Lie algebra]] a suitable [[basis]] $\{Q_A\}$ of supersymmetry generators has odd bracket proportional to the spacetime translation and hence to an [[energy]]/[[mass]] operator $E$ (with terminology as at [[unitary representation of the Poincaré group]]) \begin{displaymath} \{Q_A, Q_B\} = E \delta_{A B} \end{displaymath} for [[extended supersymmetry]] there are further bosonic super Lie algebra generators $K_{A B}$ (charges) such that \begin{displaymath} \{Q_A, Q_B\} = E \delta_{A B} - K_{A B} \,. \end{displaymath} It follows from the supersymmetry algebra that $(E \delta_{A B} - K_{A B})$ is a positive definite [[bilinear form]], which puts a lower bound on the [[energy]] given the values of these extra charges. This is called the \emph{BPS bound}. See also at \emph{[[Bridgeland stability condition]]}. In particular when this bound is satisfied in that some of the [[eigenvalues]] of the [[matrix]] $(K_{A B})$ are actually equal to the energy/mass, then the corresponding component of the right hand side in the above equation vanishes and hence then the corresponding supersymmetry generators may annihilate the given state, then called a \emph{BPS state}. This way enhanced supersymmetry of states goes along with certain charges taken extremal values. States with similar behaviour are also considered also in some models of [[soliton]] theory (English Wikipedia: \href{http://en.wikipedia.org/wiki/Bogomol'nyi%E2%80%93Prasad%E2%80%93Sommerfield_bound}{Bogomol'nyi--Prasad--Sommerfield bound}). BPS states play a central role in the investigation of [[moduli spaces]] of classical [[vacua]] as they form part of the moduli problem which is often the most tractable. Several mathematical theories in [[geometry]] are interpreted as counting BPS-states in the sense of integration on appropriate compactification of the [[moduli space]] of BPS-states in a related physical model attached to the underlying geometry: most notably the [[Gromov-Witten invariants]], [[Donaldson-Thomas invariants]] and the [[Thomas-Pandharipande invariants]]; all the three seem to be deeply interrelated though they are defined in rather very different terms. The compactification of the moduli space involves various [[stability conditions]]. \hypertarget{in_supergravity}{}\subsubsection*{{In supergravity}}\label{in_supergravity} In the context of [[supergravity]] BPS states correspond to [[super spacetimes]] admitting [[Killing vectors]]. These notably include extremal [[black brane]] solutions. \hypertarget{in_superstring_theory}{}\subsubsection*{{In superstring theory}}\label{in_superstring_theory} Specifically in [[superstring theory]] BPS states in [[target space]] correspond to string states on the worldsheet which are annihilated by the left-moving (say) half of the [[Dirac-Ramond operator]]. These are counted by the [[Witten genus]], see at \emph{\href{Witten+genus#RelationToBPSStateCounting}{Witten genus -- Relation to BPS states}}. The degeneracy of BPS states in string theory has been used to provide a microscopic interpretation of [[Bekenstein-Hawking entropy]] of [[black holes]], see at \emph{[[black holes in string theory]]}. \hypertarget{InTermsOfHigherDifferentialGeometry}{}\subsection*{{Formalization in higher differential geometry}}\label{InTermsOfHigherDifferentialGeometry} \begin{quote}% The following are some observations on the formalization of BPS states from the [[nPOV]], in [[higher differential geometry]], following (\hyperlink{SatiSchreiber15}{Sati-Schreiber 15}). \end{quote} Let $\mathbb{R}^{d-1,1|N}$ be a [[super-Minkowski spacetime]], let $(d,N,p)$ be in the [[brane scan]] and write \begin{displaymath} \phi \coloneqq \bar{\psi} \wedge E^{\wedge p} \wedge \psi \in \Omega^{p+2}(\mathbb{R}^{d-1,1|N}) \end{displaymath} for the correspoding [[super Lie algebra]] [[Lie algebra cohomology|cocycle]], as discussed at \emph{[[Green-Schwarz action functional]]}, see (\hyperlink{FSS13}{FSS 13}) for the perspective invoked here. Consider then $X$ a [[super-spacetime]] locally modeled on $\mathbb{R}^{d-1,1|N}$ as a [[Cartan geometry]], solving the relevant [[supergravity]] [[equations of motion]] (e.g. [[11-dimensional supergravity]] for $d= 11$, [[heterotic supergravity]] for $d = 10$ and $N = (1,0)$, [[type IIA supergravity]] for $d = 10$ and $N= (1,1)$ or [[type IIB supergravity]] for $d = 10$ $N= (2,0)$). This means in particular that $X$ carries a [[super differential form]] \begin{displaymath} \omega \in \Omega^{p+2}(X) \end{displaymath} which is [[definite form|definite]] on $\phi$. This is the [[curvature]] of the [[WZW-term]] which defines the relevant [[super p-brane sigma-model]] with [[target space]] $X$. By (\hyperlink{AGIT89}{AGIT 89}) $X$ is a BPS state to the extent that it carries [[Killing spinors]] which form a central [[Lie algebra extension]] of a sub-algebra of the [[supersymmetry]] algebra (i.e. of the [[super translation Lie algebra]]) by $H^p_{dR}(X)$ which is classified by the [[Lie algebra cohomology|cocycle]] given by \begin{displaymath} (\epsilon_1, \epsilon_2) \mapsto \omega(\epsilon_1,\epsilon_2) \in \Omega^p(X)_{cl}/im(\mathbf{d}_{dR}) \,. \end{displaymath} Now we observe that by (\hyperlink{hgpII}{hgpII, theorem 3.3.1}) this is precisely the [[0-truncation]] of the [[super L-infinity algebra|super]]-[[Poisson bracket Lie n-algebra]] $\mathfrak{Pois}(X,\omega)$ induced by regarding $(X,\omega)$ as an [[pre-n-plectic manifold|pre-n-plectic]] [[supermanifold]] and restricting along the inclusion of the [[Killing vectors]]/[[Killing spinors]] into all the [[Hamiltonian vector fields]]. \begin{displaymath} H^p_{dR}(X) \to \tau_0 \mathfrak{Pois}(X,\omega) \to Vect_{Ham}(X) \end{displaymath} (Here we are using that if an [[n-type]] is an extension of a [[0-type]], then its 0-truncation is still an extension by the 0-truncation of the original homotopy fiber.) The elements in $H^p_{dR}(X)$ here are precisely the $p$-brane charges, as discussed in (\hyperlink{AGIT89}{AGIT 89, p. 8}). Hence $X$ is the more BPS the more odd-graded elements there are in $\tau_0 \mathfrak{Pois}(X,\omega)$ (or its restriction to super-isometries). Hence $X$ is a 1/2 BPS state of supergravity if the odd dimension of this is half that of $\mathbb{R}^{d-1,d|N}$, it is 1/4 BPS if the odd dimension is one fourth of that of $\mathbb{R}^{d-1,d|N}$, etc. Notice that if \begin{displaymath} \itexarray{ && \mathbf{B}^{p+1} (\mathbb{R}/\Gamma)_{conn} \\ & {}^{\mathllap{\mathbf{L}_{WZW}}}\nearrow & \downarrow^{\mathrlap{F_{(-)}}} \\ X &\stackrel{\omega}{\longrightarrow}& \mathbf{\Omega}^{p+2}_{cl} } \end{displaymath} is a [[prequantum line n-bundle|prequantization]] of $\omega$, i.e. an actual [[WZW term]] with [[curvature]] $\omega$, then $\mathfrak{Pois}(X,\omega)$ is supposed to be the [[Lie differentiation]] of the [[stabilizer group]] of $\mathbf{L}_{WZW}$, which is the [[quantomorphism n-group]] $QuantMorph(\mathbf{L}_{WZW})$. (This Lie differentiation statement is strictly shown only for $p = 0$ and $p = 1$ in [[schreiber:differential cohomology in a cohesive topos|dcct]] but clearly should hold generally.) Hence we may regard $\mathbf{QuantMorph}(\mathbf{L}_{WZW})$ (or its restriction to super-[[isometries]]) as the [[Lie integration]] of the brane-charge extended supersymmetry algebra. By the discussion at \emph{\href{conserved+current#InHigherPrequantumGeometry}{conserved current -- In higher differential geometry}} this is indeed the [[n-group]] of conserved currents of $\mathbf{L}_{WZW}$ regraded as a [[local Lagrangian]], and so this conceptually connects back to the considerations in (\hyperlink{AGIT89}{AGIT 89}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_11d_supergravity}{}\subsubsection*{{In 11d Supergravity}}\label{in_11d_supergravity} In [[11-dimensional supergravity]] ([[M-theory]]) there are four kinds of 1/2 BPS states (the [[black brane|black]] [[M-branes]]) (e.g. \hyperlink{Stelle98}{Stelle 98, section 3} \hyperlink{EHKNT07}{EHKNT 07}): \begin{itemize}% \item the [[M2-brane]]; \item the [[M5-brane]]; \item the [[M-wave]]; \item the [[Kaluza-Klein monopole]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Bridgeland stability condition]] \item [[Killing spinor]] \item [[supermultiplet]] \item [[wall crossing]] \item [[protection from quantum corrections]] \item [[positive energy theorem]] \item [[enhanced gauge symmetry]] \item [[geometry of physics -- BPS charges]] \item [[intersecting branes]] [[membrane triple junction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} The BPS bound derives its name from the discussion of [[magnetic monopoles]] in 4-dimensional [[Yang-Mills theory]] in \begin{itemize}% \item (E. B. Bogomolnyj) [[?. ?. ???????????]], \emph{ }, . . \textbf{24} (1976) 449--454 \item M. K. Prasad, [[Charles Sommerfield]], \emph{Exact classical solution for `t Hooft monopole and the Julia-Zee dyon}, Phys. Rev. Lett. \textbf{35} (1975) 760--762. \end{itemize} The extension of the term ``BPS-saturated state'' from this case to situations in [[string theory]] seems to have happened in \begin{itemize}% \item [[Edward Witten]], around (2.5) of \emph{[[String Theory Dynamics In Various Dimensions]]}, Nucl.Phys.B443:85-126,1995 (\href{http://arxiv.org/abs/hep-th/9503124}{arXiv:hep-th/9503124}) \end{itemize} The original article identifying the role of BPS states in supersymmetric field theory is \begin{itemize}% \item [[Edward Witten]], [[David Olive]], \emph{Supersymmetry algebras that include topological charges} (2002) (\href{http://www.sciencedirect.com/science/article/pii/037026937890357X}{journal}) \end{itemize} Exposition and review includes \begin{itemize}% \item [[Andrew Neitzke]], \emph{What is a BPS state?}, 2012 (\href{http://www.ma.utexas.edu/users/neitzke/expos/bps-expos.pdf}{pdf}) \item [[Tudor Dimofte]], \emph{Refined BPS invariants, Chern-Simons theory, and the quantum dilogarithm}, 2010 (\href{http://thesis.library.caltech.edu/5808/1/DimofteTDofficial.pdf}{pdf}, \href{http://thesis.library.caltech.edu/5808/}{web}) \end{itemize} Further developments are in \begin{itemize}% \item [[Jeffrey Harvey]], [[Greg Moore]], \emph{Algebras, BPS states, and strings}, Nucl.Phys.B463:315--368 (1996) (\href{http://dx.doi.org/10.1016/0550-3213%2895%2900605-2}{doi}); \href{http://arxiv.org/abs/hep-th/9510182}{hep-th/9510182}; \item [[Jeffrey Harvey]], [[Greg Moore]], \emph{On the algebras of BPS states}, Comm. Math. Phys. \textbf{197} (1998), 489---519, \href{http://dx.doi.org/10.1007/s002200050461}{doi}, \href{http://arxiv.org/abs/hep-th/9609017}{hep-th/9609017}. \item [[Ali Chamseddine]], M. S. Volkov, \emph{Non-abelian BPS monopoles in $N=4$ gauged supergravity}, Physical Review Letters 79: 3343--3346 (1997) \href{http://arxiv.org/abs/hep-th/9707176}{hep-th/9707176}. \item [[Steven Weinberg]], \emph{The quantum theory of fields}, vol. II \item [[Tudor Dimofte]], [[Sergei Gukov]], \emph{Refined, Motivic, and Quantum}, \href{http://arXiv.org/abs/0904.1420}{arXiv:0904.1420} \item [[Davide Gaiotto]], [[Gregory Moore]], [[Andrew Neitzke]], \emph{Wall-crossing, Hitchin systems, and the WKB approximation}, \href{http://arxiv.org/abs/0907.3987}{arxiv:0907.3987} \item R. Pandharipande, R.P. Thomas, \emph{Stable pairs and BPS invariants}, \href{http://arxiv.org/abs/0711.3899}{arXiv:0711.3899} \item Markus Reineke, \emph{Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants}, \href{http://arXiv.org/abs/0903.0261}{arXiv:0903.0261} \item Duiliu-Emanuel Diaconescu, \emph{Moduli of ADHM sheaves and local Donaldson-Thomas theory}, \href{http://arXiv.org/abs/0801.0820}{arXiv:0801.0820} \item [[Tom Bridgeland]], \emph{Stability conditions on triangulated categories}, Ann. of Math. 166 (2007) 317--345,\href{http://arxiv.org/abs/math/0212237}{math.AG/0212237} \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Stability structures, motivic Donaldson-Thomas invariants and cluster transformations}, \href{http://arxiv.org/abs/0811.2435}{arXiv:0811.2435} \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Motivic Donaldson-Thomas invariants: summary of results}, \href{http://arxiv.org/abs/0910.4315}{arxiv/0910.4315} \item [[Dominic Joyce]], Y. Song, \emph{A theory of generalized Donaldson-Thomas invariants}, \href{http://arxiv.org/abs/0810.5645}{arxiv/0810.5645} \end{itemize} \hypertarget{IntroductoryReferences}{}\subsubsection*{{Introductions, surveys and lectures}}\label{IntroductoryReferences} An introduction that starts at the beginning and then covers much of the ground in some detail is \begin{itemize}% \item [[Greg Moore]], \emph{PiTP Lectures on BPS states and wall-crossing in $d = 4$, $\mathcal{N} = 2$ theories} (\href{http://www.physics.rutgers.edu/~gmoore/PiTP_July26_2010.pdf}{pdf}) \end{itemize} A survey of progress on the most general picture is in \begin{itemize}% \item Katzutoshi Ohta, \emph{BPS state counting and related physics} (2005) (\href{http://www2.yukawa.kyoto-u.ac.jp/~qft/2005/slides/ohta.pdf}{pdf}) \end{itemize} \hypertarget{in_supergravity_2}{}\subsubsection*{{In supergravity}}\label{in_supergravity_2} Discussion of extremal/BPS [[black branes]] in [[supergravity]] (especially in [[11-dimensional supergravity]] and 10d [[type II supergravity]]) includes \begin{itemize}% \item [[Kellogg Stelle]], \emph{BPS Branes in Supergravity} (\href{http://arxiv.org/abs/hep-th/9803116}{arXiv:hep-th/9803116}) \item [[Jerome Gauntlett]], [[Chris Hull]], \emph{BPS States with Extra Supersymmetry}, JHEP 0001 (2000) 004 (\href{http://arxiv.org/abs/hep-th/9909098}{arXiv:hep-th/9909098}) \item [[Francois Englert]], Laurent Houart, [[Axel Kleinschmidt]], [[Hermann Nicolai]], Nassiba Tabti, \emph{An $E_9$ multiplet of BPS states}, JHEP 0705:065,2007 (\href{http://arxiv.org/abs/hep-th/0703285}{arXiv:hep-th/0703285}) \item Andrew Callister, [[Douglas Smith]], \emph{Topological BPS charges in 10 and 11-dimensional supergravity}, Phys. Rev. D78:065042,2008 (\href{http://arxiv.org/abs/0712.3235}{arXiv:0712.3235}) \item Andrew Callister, [[Douglas Smith]], \emph{Topological charges in $SL(2,\mathbb{R})$ covariant massive 11-dimensional and Type IIB SUGRA}, Phys.Rev.D80:125035,2009 (\href{http://arxiv.org/abs/0907.3614}{arXiv:0907.3614}) \item Andrew Callister, \emph{Topological BPS charges in 10- and 11-dimensional supergravity}, thesis 2010 (\href{http://inspirehep.net/record/1221591?ln=en}{spire}) \item Cristine N. Ferreira, \emph{BPS solution for eleven-dimensional supergravity with a conical defect configuration} (\href{http://arxiv.org/abs/1312.0578}{arXiv:1312.0578}) \end{itemize} Specifically for $1/2^n$-BPS states of intersecting [[M-branes]] in 11d there is discussion in \begin{itemize}% \item [[Arkady Tseytlin]], \emph{Harmonic superpositions of M-branes}, Nucl.Phys.B475:149-163,1996 (\href{https://arxiv.org/abs/hep-th/9604035}{arXiv:hep-th/9604035}) also in [[Mike Duff]] (ed.) chapter 5 of \emph{[[The World in Eleven Dimensions]]} \end{itemize} see also \begin{itemize}% \item [[Jerome Gauntlett]], \emph{Intersecting Branes} (\href{https://arxiv.org/abs/hep-th/9705011}{hep-th/9705011}) \item [[Igor Bandos]], [[Jose de Azcarraga]], Jose Izquierdo, Jerzy Lukierski, \emph{BPS states in M-theory and twistorial constituents}, Phys.Rev.Lett.86:4451-4454,2001 (\href{https://arxiv.org/abs/hep-th/0101113}{arXiv:hep-th/0101113}) \item U. Gran, [[Jan Gutowski]], [[George Papadopoulos]], \emph{Classification, geometry and applications of supersymmetric backgrounds} (\href{https://arxiv.org/abs/1808.07879}{arXiv:1808.07879}) \end{itemize} Discussion in the context of multiple [[M2-branes]] in the [[BLG model]] is in \begin{itemize}% \item [[Jonathan Bagger]], [[Neil Lambert]], Sunil Mukhi, Constantinos Papageorgakis, section 1.6 of \emph{Multiple Membranes in M-theory} (\href{http://arxiv.org/abs/1203.3546}{arXiv:1203.3546}) \end{itemize} Discussion for [[4d supergravity]], hence in [[KK-compactification]] of [[type II supergravity]] on a [[Calabi-Yau manifold]] is due to \begin{itemize}% \item [[Frederik Denef]], \emph{Supergravity flows and D-brane stability}, JHEP 0008:050,2000 (\href{http://arxiv.org/abs/hep-th/0005049}{arXiv:hep-th/0005049}) \item [[Frederik Denef]], \emph{Quantum Quivers and Hall/Hole Halos}, JHEP 0210:023,2002 (\href{http://arxiv.org/abs/hep-th/0206072}{arXiv:hep-th/0206072}) \end{itemize} Discussion of more general classification of solutions to [[supergravity]] preserving some [[supersymmetry]], i.e. admitting some [[Killing spinors]] includes \begin{itemize}% \item [[Jerome Gauntlett]], Stathis Pakis, \emph{The Geometry of $D=11$ Killing Spinors}, JHEP 0304 (2003) 039 (\href{http://arxiv.org/abs/hep-th/0212008}{arXiv:hep-th/0212008}) \item [[Eric D'Hoker]], John Estes, Michael Gutperle, Darya Krym, Paul Sorba, \emph{Half-BPS supergravity solutions and superalgebras}, JHEP0812:047,2008 (\href{http://arxiv.org/abs/0810.1484}{arXiv:0810.1484}) \end{itemize} The conceptual identification of the relevant brane-charge extension of the [[supersymmetry]] algebra as that of the [[conserved currents]] of the [[Green-Schwarz super p-brane sigma models]] for branes is due to \begin{itemize}% \item [[José de Azcárraga]], [[Jerome Gauntlett]], J.M. Izquierdo, [[Paul Townsend]], \emph{Topological Extensions of the Supersymmetry Algebra for Extended Objects}, Phys. Rev. Lett. 63 (1989) 2443 (\href{http://inspirehep.net/record/26393?ln=en}{spire}) \end{itemize} reviewed in \begin{itemize}% \item [[José de Azcárraga]], Jos\'e{} M. Izquierdo, section 8.8. of \emph{Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics} , Cambridge monographs of mathematical physics, (1995) \end{itemize} This is for branes in the old [[brane scan]] ([[strings]], [[membranes]], [[NS5-branes]]), excluding [[D-branes]] and [[M5-brane]]. The generalization oft this perspective to the [[M5-brane]] is discussed in \begin{itemize}% \item [[Dmitri Sorokin]], [[Paul Townsend]], \emph{M-theory superalgebra from the M-5-brane}, Phys.Lett. B412 (1997) 265-273 (\href{http://arxiv.org/abs/hep-th/9708003}{arXiv:hep-th/9708003}) \end{itemize} and the generalization to [[D-branes]] is discussed in \begin{itemize}% \item Hanno Hammer, \emph{Topological Extensions of Noether Charge Algebras carried by D-p-branes}, Nucl.Phys. B521 (1998) 503-546 (\href{http://arxiv.org/abs/hep-th/9711009}{arXiv:hep-th/9711009}) \end{itemize} Detailed discussion of examples for various backgrounds is in \begin{itemize}% \item Takeshi Sato, \emph{Superalgebras in Many Types of M-Brane Backgrounds and Various Supersymmetric Brane Configurations}, Nucl.Phys. B548 (1999) 231-257 (\href{http://arxiv.org/abs/hep-th/9812014}{arXiv:hep-th/9812014}) \end{itemize} Discussion of this in [[higher differential geometry]] via the [[Poisson bracket Lie n-algebra]] is in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Lie n-algebras of BPS charges]]} (\href{http://arxiv.org/abs/1507.08692}{arXiv:1507.08692}) \end{itemize} Discussion of relation of [[M5-brane]] BPS states to [[knot invariants]] includes \begin{itemize}% \item [[Edward Witten]], \emph{Fivebranes and Knots} (\href{http://arxiv.org/abs/1101.3216}{arXiv:1101.3216}) \item [[Sergei Gukov]], Marko Sto\v{s}i, \emph{Homological algebra of knots and BPS states} (\href{http://arxiv.org/abs/1112.0030}{arXiv:1112.0030}) \item Ross Elliot, [[Sergei Gukov]], \emph{Exceptional knot homology} (\href{http://arxiv.org/abs/1505.01635}{arXiv:1505.01635}) \end{itemize} \hypertarget{SpectralNetworksReferences}{}\subsubsection*{{Spectral networks}}\label{SpectralNetworksReferences} \begin{itemize}% \item [[Davide Gaiotto]], [[Greg Moore]], [[Andrew Neitzke]], \emph{Spectral networks} (\href{http://arxiv.org/abs/1204.4824}{arXiv:1204.4824}, \href{http://www.ma.utexas.edu/users/neitzke/spectral-network-movies/}{illustrating animations}) \end{itemize} [[!redirects BPS state]] [[!redirects BPS states]] [[!redirects BPS-states]] [[!redirects BPS-state]] [[!redirects BPS invariant]] [[!redirects BPS invariants]] [[!redirects BPS charge]] [[!redirects BPS charges]] [[!redirects BPS brane]] [[!redirects BPS branes]] [[!redirects BPS solution]] [[!redirects BPS solutions]] \end{document}