\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{BRST complex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called the ``BRST complex'' in the [[physics]] literature is the [[Lie infinity-algebroid|qDGCA]] which is the [[Chevalley-Eilenberg algebra]] of the $L_\infty$-[[Lie infinity-algebroid|algebroid]] which is the differential version in [[Lie theory]] of the $\infty$-groupoid \begin{itemize}% \item whose space of objects is the space of configurations/histories of a given physical system; \item whose morphisms describe the gauge transformations between these configurations/histories; \item whose $k$-morphisms describe the $k$-fold gauge-of-gauge transformations. \end{itemize} The generators of the BRST complex are called \begin{itemize}% \item in degree 0: \textbf{fields}; \item in degree 1: \textbf{[[ghost field]]}; \item in degree 2: \textbf{[[ghost-of-ghost fields]]}; \item etc. \end{itemize} The [[cochain cohomology]] of the BRST complex is called, of course, \emph{BRST cohomology}. \hypertarget{details}{}\subsection*{{Details}}\label{details} For details see at \begin{itemize}% \item \emph{[[A first idea of quantum field theory]]} the chapter \emph{\href{A+first+idea+of+quantum+field+theory#Gauge+symmetries}{Gauge symmetries}}. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} The BRST complex described a homotopical [[quotient]] of a space by an infinitesimal [[action]]. Combined with a homotopical intersection, it is part of the [[BRST-BV complex]]. \begin{itemize}% \item [[gauge transformation]], [[higher gauge transformation]] \item [[ghost field]], [[ghost-of-ghost field]] \item [[antifield]], [[antighost field]] \item [[local BRST complex]] \item [[variational BRST-bicomplex]] \item [[equivariant de Rham cohomology]] \end{itemize} [[!include gauge field - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The idea of ``ghost'' fields was introduced in \begin{itemize}% \item [[Richard Feynman]], \emph{Quantum theory of gravitation} In: Acta physica polonica. vol 24, 1963, S. 697 \end{itemize} and expanded on in \begin{itemize}% \item [[Richard Feynman]] in [[John Wheeler]], Klauder (eds.), \emph{Magic without Magic}, Wheeler-Festschrift (1972) \end{itemize} The BRST formalism originates around \begin{itemize}% \item [[Carlo Becchi]], A. Rouet, [[Raymond Stora]], (1976). Renormalization of gauge theories. Ann. Phys. 98: 287, \end{itemize} see also the references at \emph{[[BRST]]}. A classical standard references for the Lagrangian formalism is \begin{itemize}% \item [[Marc Henneaux]], \emph{Lectures on the Antifield-BRST formalism for gauge theories}, Nuclear Physics B (Proceedings Supplement) 18A (1990) 47-106 (\href{http://www.math.uni-hamburg.de/home/schweigert/ws07/henneaux2.pdf}{pdf}) \end{itemize} Similarly the bulk of the textbook \begin{itemize}% \item [[Marc Henneaux]], [[Claudio Teitelboim]], \emph{[[Quantization of Gauge Systems]]} \end{itemize} considers the Hamiltonian formulation. Chapters 17 and 18 are about the Lagrangian (``antifield'') formulation, with section 18.4 devoted to the relation between the two. The [[L-infinity algebroid]]-structure of the [[local BRST complex]] on the [[jet bundle]] is made manifest in \begin{itemize}% \item [[Glenn Barnich]], \emph{A note on gauge systems from the point of view of Lie algebroids}, in P. Kielanowski, V. Buchstaber, A. Odzijewicz, M.. Schlichenmaier, T Voronov, (eds.) XXIX Workshop on Geometric Methods in Physics, vol. 1307 of AIP Conference Proceedings, 1307, 7 (2010) (\href{https://arxiv.org/abs/1010.0899}{arXiv:1010.0899}, \href{https://doi.org/10.1063/1.3527427}{doi:/10.1063/1.3527427}) \end{itemize} Discussion with more emphasis on the applications to quantum field theory of interest is in lecture 3 of \begin{itemize}% \item [[Edward Witten]], \emph{Dynamics of Quantum Field Theory} in vol II, starting page 1119, of [[Pierre Deligne]], [[Pavel Etingof]], [[Dan Freed]], L. Jeffrey, [[David Kazhdan]], [[John Morgan]], D.R. Morrison and [[Edward Witten]], eds. \emph{[[Quantum Fields and Strings]], A course for mathematicians}, 2 vols. Amer. Math. Soc. Providence 1999. \end{itemize} The [[perturbative quantum field theory|perturbative quantization]] of [[gauge theories]] ([[Yang-Mills theory]]) in [[causal perturbation theory]]/[[perturbative AQFT]] is discussed (for trivial [[principal bundles]] and restricted to [[gauge invariant observables]]) via [[BRST-complex]]/[[BV-formalism]] in \begin{itemize}% \item [[Stefan Hollands]], \emph{Renormalized Quantum Yang-Mills Fields in Curved Spacetime}, Rev. Math. Phys.20:1033-1172, 2008 (\href{https://arxiv.org/abs/0705.3340}{arXiv:0705.3340}) \item [[Klaus Fredenhagen]], [[Kasia Rejzner]], \emph{Batalin-Vilkovisky formalism in the functional approach to classical field theory}, Commun. Math. Phys. 314(1), 93--127 (2012) (\href{https://arxiv.org/abs/1101.5112}{arXiv:1101.5112}) \item [[Klaus Fredenhagen]], [[Kasia Rejzner]], \emph{Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory}, Commun. Math. Phys. 317(3), 697--725 (2012) (\href{https://arxiv.org/abs/1110.5232}{arXiv:1110.5232}) \item [[Katarzyna Rejzner]], \emph{Remarks on local symmetry invariance in perturbative algebraic quantum field theory} (\href{https://arxiv.org/abs/1301.7037}{arXiv:1301.7037}) \item [[Katarzyna Rejzner]], \emph{Remarks on local symmetry invariance in perturbative algebraic quantum field theory} (\href{https://arxiv.org/abs/1301.7037}{arXiv:1301.7037}) \item Mojtaba Taslimi Tehrani, \emph{Quantum BRST charge in gauge theories in curved space-time} (\href{https://arxiv.org/abs/1703.04148}{arXiv:1703.04148}) \end{itemize} and surveyed in \begin{itemize}% \item [[Kasia Rejzner]], section 7 of \emph{Perturbative algebraic quantum field theory} Springer 2016 \end{itemize} Discussion of the BRST complex of the [[bosonic string]]/for [[2d CFT]] includes \begin{itemize}% \item [[Graeme Segal]], p.114 and following of \emph{The definition of conformal field theory} , preprint, 1988; also in [[Ulrike Tillmann]] (ed.) \emph{Topology, geometry and quantum field theory} , London Math. Soc. Lect. Note Ser., Vol. 308. Cambridge University Press, Cambridge (2004) 421-577. (\href{https://people.maths.ox.ac.uk/segalg/0521540496txt.pdf}{pdf}) \end{itemize} Discussion of the BRST complex for the [[superstring]] (hence with the corresponding [[Lie algebroid]] being actually a [[super Lie algebroid]]) is for instance in \begin{itemize}% \item [[José Figueroa-O'Farrill]], Takashi Kimura, \emph{The BRST cohomology of the NSR string: vanishing and ``-ghost'` theorems}, Comm. Math. Phys. Volume 124, Number 1 (1989), 105-132. (\href{http://projecteuclid.org/euclid.cmp/1104179078}{Euclid}) \item [[Alexander Belopolsky]], \emph{De Rham Cohomology of the Supermanifolds and Superstring BRST Cohomology}, Phys.Lett. B403 (1997) 47-50 (\href{http://arxiv.org/abs/hep-th/9609220}{arXiv:hep-th/9609220}) \end{itemize} The perspective on the BRST complex as a formal dual to a space in [[dg-geometry]] is relatively clearly stated in section 2 of \begin{itemize}% \item [[Kevin Costello]], \emph{Renormalisation and the Batalin-Vilkovisky formalism} (\href{http://arxiv.org/abs/0706.1533}{arXiv}). \end{itemize} For more along these lines see [[BV-BRST formalism]]. \hypertarget{history}{}\subsubsection*{{History}}\label{history} \begin{itemize}% \item [[Carlo Becchi]], \emph{BRS ``Symmetry'', prehistory and history} (\href{https://arxiv.org/abs/1107.1070}{arXiv:1107.1070}) \end{itemize} [[!redirects BRST complexes]] [[!redirects BRST differential]] [[!redirects BRST differentials]] [[!redirects BRST cohomology]] [[!redirects BRST operator]] [[!redirects BRST operators]] [[!redirects BRST Lagrangian]] \end{document}