\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{BV-operator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{InPerturbativeQuantumFieldTheory}{In perturbative quantum field theory}\dotfill \pageref*{InPerturbativeQuantumFieldTheory} \linebreak \noindent\hyperlink{ForFiniteDimensionalToyPathIntegrals}{For finite-dimensional toy path integrals}\dotfill \pageref*{ForFiniteDimensionalToyPathIntegrals} \linebreak \noindent\hyperlink{InCausalPerturbationTheory}{In causal perturbation theory}\dotfill \pageref*{InCausalPerturbationTheory} \linebreak \noindent\hyperlink{background}{Background}\dotfill \pageref*{background} \linebreak \noindent\hyperlink{BVOperatorInCausalPerturbationTheory}{The BV-Operator}\dotfill \pageref*{BVOperatorInCausalPerturbationTheory} \linebreak \noindent\hyperlink{InCausalPerturbationTheoryRelationToTimeOrderedAntibracket}{Relation to time-ordered antibracket}\dotfill \pageref*{InCausalPerturbationTheoryRelationToTimeOrderedAntibracket} \linebreak \noindent\hyperlink{SchwingerDysonEquation}{Schwinger-Dyson equation}\dotfill \pageref*{SchwingerDysonEquation} \linebreak \noindent\hyperlink{quantum_master_equation}{Quantum master equation}\dotfill \pageref*{quantum_master_equation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{BV-operator} has two different but (somewhat subtly) related meanings: \begin{enumerate}% \item In [[perturbative quantum field theory]] (discussed \hyperlink{InPerturbativeQuantumFieldTheory}{below}) the \emph{BV-operator} or \emph{BV-Laplacian} (\hyperlink{BatalinVilkovisky81}{Batalin-Vilkovisky 81}) is essentially the difference between the action of the [[BV differential]] on the [[algebra of observables]] before and after [[quantization]] of the [[free field theory]] around which the [[perturbative quantum field theory|perturbative quantization]] is considered; it is a quantum correction $i \hbar \Delta_{BV}$ (of order of [[Planck's constant]] $\hbar$) to the [[BV differential]] $s_{BV} = \{-S',-.\}$. Where the condition $\left(\{-S',-\}\right)^2 = 0$ for the [[BV-differential]] to be a [[differential]] is called the ``[[master equation]]'' in [[BV-BRST theory]], the quantum corrected version $\left( \{-S',-\} + i \hbar \Delta\right)^2 = 0$ is called the \emph{[[quantum master equation]]}. \item In [[higher algebra]], under the identification of a [[BV-algebra]] with the [[chain homology]] of a [[little k-cubes operad|E2-algebra]], the \emph{BV-operator} corresponds to the operation of rotating a little disk around. \end{enumerate} For the relation between the two see \emph{[[relation between BV and BD]]}. \hypertarget{InPerturbativeQuantumFieldTheory}{}\subsection*{{In perturbative quantum field theory}}\label{InPerturbativeQuantumFieldTheory} In [[perturbative quantum field theory]] the BV-operator $i \hbar \Delta$ may be understood intuitively as reflecting the contribution of the [[Gaussian measure]] in the [[path integral]] of the [[free field theory]] around which the perturbative quantization takes place. This intuition may be made precise for finite-dimensional toy path integrals. This we discuss in: \begin{itemize}% \item \emph{\hyperlink{ForFiniteDimensionalToyPathIntegrals}{In finite-dimensional toy path integrals}} \end{itemize} In the rigorous construction of [[relativistic field theory|relativistic]] [[perturbative quantum field theory]] via [[causal perturbation theory]]/[[perturbative AQFT]] there is a rigorous incarnation of the BV-operator (\hyperlink{FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b, section 2}, \hyperlink{Rejzner11}{Rejzner 11, section 5.1.2}): The would-be path integral is reflected in the [[perturbative S-matrix]], hence in the [[time ordered products]], and the BV-operator on [[regular polynomial observables]] is the difference between the classical [[BV-differential]] and its [[conjugation]] into the [[time-ordered products]] (def. \ref{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator} below). This we discuss in \begin{itemize}% \item \emph{\hyperlink{InCausalPerturbationTheory}{In causal perturbation theory}} \end{itemize} \hypertarget{ForFiniteDimensionalToyPathIntegrals}{}\subsubsection*{{For finite-dimensional toy path integrals}}\label{ForFiniteDimensionalToyPathIntegrals} If $X$ is a [[finite number|finite]] [[dimension|dimensional]] [[closed manifold|closed]] [[orientation|oriented]] [[smooth manifold]], then [[integration of differential forms]] of top degree over $X$ may be identified with sending such differential forms to their [[image]] in the [[de Rham cohomology]] of $X$. This may be slightly reformulated: Fixing a [[volume form]] $\mu$ on $X$ it induces by contraction with [[vector fields]] degreewise a [[linear isomorphism]] \begin{displaymath} \mu \;\colon\; \Gamma_X(\wedge^n T^\ast X) \overset{\simeq}{\longrightarrow} \Gamma_X(\wedge^{dim(X)-n} T X) \end{displaymath} between the spaces of [[differential n-forms]] on $X$ and the space of [[multivector fields]] on $X$ of degree $n-dim(X)$. Under this isomorphism the [[de Rham differential]] induces a differential on [[multivector fields]]: \begin{displaymath} \Delta_{BV} \;\coloneqq\; \mu \circ d_{dR} \circ \mu^{-1} \end{displaymath} This $\Delta_{BV}$ is the \emph{BV-operator} in this simple situation. The above statement about [[integration]] now translates into saying that for $f$ any [[smooth function]] on $X$, then its [[integration of differential forms]] $\int f \mu$ may be identified with the [[image]] of $f$ in the [[chain homology]] of the BV-operator $\Delta_{BV}$. If one thinks of $X$ as a space of [[field configurations]] and of $f = \exp(i \hbar S)$ as an exponentiated [[action functional]], the one may think of this integral $\int \exp(i \hbar S) \mu$ as the finite-dimensional toy version of a [[path integral]]. While this is in general not defined in the actual non-finite dimensional situations in [[field theory]], the above re-formulation in terms of the [[chain homology]] of a BV-operator does make sense whenever an appropriate kind of differential is given. One may then try to axiomatize which chain complexes qualify as BV-complex and try to interpret their chain homology as computing perturbative [[path integrals]]. For more on this perspective see at \emph{[[BV-BRST formalism]]} the section \emph{\href{BV-BRST+formalism#HomologicalIntegration}{Quantum BV as homological (path-)integration}} \hypertarget{InCausalPerturbationTheory}{}\subsubsection*{{In causal perturbation theory}}\label{InCausalPerturbationTheory} For more context for the following see at \emph{[[A first idea of quantum field theory]]} the chapter \emph{\href{A+first+idea+of+quantum+field+theory#FreeQuantumFields}{Free quantum fields}}. \hypertarget{background}{}\paragraph*{{Background}}\label{background} Recall the following context Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] admitting a [[gauge fixing]], and let $\mathbf{L}' - \mathbf{L}'_{BRST}$ be its BV-BRST [[Lagrangian density]] after [[gauge fixing]] (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}), so that the gauge-fixed [[local BRST complex|local BV-BRST differential]] is given by the [[local antibracket]] as \begin{displaymath} s' \;=\; \left\{ -\mathbf{L}' + \mathbf{L}'_{BRST}, - \right\} \end{displaymath} The corresponding global BV-BRST differential on [[regular polynomial observables]] is (\href{A+first+idea+of+quantum+field+theory#ComplexBVBRSTGlobal}{this def.}) \begin{equation} \left\{ -S' + S'_{BRST} \;,\; -\right\} \;\coloneqq\; \left\{ -\tau_\Sigma\mathbf{L}'(x) + \tau_\Sigma\mathbf{L}'_{BRST}(x), - \right\} \;\colon\; PolyObs(E)_{reg} \longrightarrow PolyObs(E)_{reg} \,. \label{GaugeFixedGlobalBVBRSTDifferentialRecalled}\end{equation} By definition of [[gauge fixing]] (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}), the [[Euler-Lagrange equation|Euler-Lagrange]] [[equation of motion]] for $\mathbf{L}'$ are [[Green hyperbolic differential equations|Green hyperbolic]] and hence have a [[causal propagator]] $\Deta = \Delta_+ - \Delta_-$ and admit a compatible \emph{[[Wightman propagator]]} $\Delta_H = \tfrac{i}{2}(\Delta_+ - \Delta_-) + H$ and the corresponding [[Feynman propagator]] $\Delta_F \coloneqq \tfrac{i}{2}(\Delta_+ + \Delta_-) + H$. The [[star products]] with respect to these (\href{star+product#PropagatorStarProduct}{this def.}) on [[regular polynomial observables]] \begin{displaymath} \star_H, \star_F \;\colon\; PolyObs(E)_{reg}[ [\hbar] ] \longrightarrow PolyObs(E)_{reg}[ [\hbar] ] \end{displaymath} are, respectively, the [[Wick algebra]] product ([[operator product]], see \href{Wick+algebra#NormalOrderedProductNotation}{this def.}) \begin{displaymath} A_1 A_2 \;\coloneqq\; A_1 \star_H A_2 \;\coloneqq\; ((-) \cdot (-)) \circ \exp\left( \hbar \underset{\Sigma \times \Sigma}{\int} \Delta_{H}(x,y)^{a b} \frac{\delta}{\delta \mathbf{\Phi}^a(x)} \otimes \frac{\delta}{\delta \mathbf{\Phi}^b(y)} \, dvol_\Sigma(x) \, dvol_\Sigma(y) \right) (A_1 \otimes A_2) \end{displaymath} and the [[time-ordered product]] (see again \href{Wick+algebra#NormalOrderedProductNotation}{this def.}) \begin{displaymath} T(A_1 A_2) \;\coloneqq\; A_1 \star_F A_2 \;\coloneqq\; ((-) \cdot (-)) \circ \exp\left( \hbar \underset{\Sigma \times \Sigma}{\int} \Delta_{F}(x,y)^{a b} \frac{\delta}{\delta \mathbf{\Phi}^a(x)} \otimes \frac{\delta}{\delta \mathbf{\Phi}^b(y)} \, dvol_\Sigma(x)\, dvol_\Sigma(y) \right) (A_1 \otimes A_2) \,, \end{displaymath} Since the [[Feynman propagator]] is symmetric (\href{A+first+idea+of+quantum+field+theory#SymmetricFeynmanPropagator}{this prop.}), the latter [[time ordered product]] on [[regular polynomial observables]] is [[isomorphism|isomorphic]] (via \href{star+product#SymmetricContribution}{this prop.}) to the pointwise product, via \begin{equation} \mathcal{T}A \;\coloneqq\; \exp\left( \tfrac{1}{2} \hbar \underset{\Sigma}{\int} \Delta_F(x,y)^{a b} \frac{\delta^2}{\delta \mathbf{\Phi}^a(x) \delta \mathbf{\Phi}^b(y)} \right) A \label{RecallIsomorphsimTimeOrdering}\end{equation} as \begin{displaymath} A_1 \star_{F} A_2 \;=\; \mathcal{T}( \mathcal{T}^{-1}A_1 \cdot \mathcal{T}^{-1}A_2 ) \end{displaymath} (\href{time-ordered+product#IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{this prop.}). \hypertarget{BVOperatorInCausalPerturbationTheory}{}\paragraph*{{The BV-Operator}}\label{BVOperatorInCausalPerturbationTheory} \begin{defn} \label{AntibracketTimeOrdered}\hypertarget{AntibracketTimeOrdered}{} \textbf{([[time-ordered product|time-ordered]] [[antibracket]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] (\href{A+first+idea+of+quantum+field+theory#FreeFieldTheory}{this def.}) with [[gauge fixing|gauge fixed]] BV-BRST [[Lagrangian density]] $-\mathbf{L}' + \mathbf{L}'_{BRST}$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) on a graded BV-BRST [[field bundle]] $E_{\text{BV-BRST}} \coloneqq T^\ast[-1]_{\Sigma,inf}(E \times_\Sigma \mathcal{G}[1] \times_{\Sigma} A \times_\Sigma A[-1])$. Then the \emph{time-ordered global [[antibracket]]} on [[regular polynomial observables]] \begin{displaymath} PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \otimes PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \overset{\{-,-\}_{\mathcal{T}}}{\longrightarrow} PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} is the [[conjugation]] of the global [[antibracket]] (\href{A+first+idea+of+quantum+field+theory#ComplexBVBRSTGlobal}{this def.}) by the time-ordering operator $\mathcal{T}$ (from \href{time-ordered+product#IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{this prop.}): \begin{displaymath} \{-,-\}_{\mathcal{T}} \;\coloneqq\; \mathcal{T}\left(\left\{ \mathcal{T}^{-1}(-), \mathcal{T}^{-1}(-)\right\}\right) \end{displaymath} hence \begin{displaymath} \itexarray{ PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \otimes PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] &\overset{\{-,-\}}{\longrightarrow}& PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \\ {}^{\mathllap{\mathcal{T}}}_{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\mathcal{T}}}_\simeq \\ PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \otimes PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] &\overset{ \{-,-\}_{\mathcal{T}} }{\longrightarrow}& PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] } \end{displaymath} \end{defn} (\hyperlink{FredenhagenRejzner11}{Fredenhagen-Rejzner 11, (27)}, \hyperlink{Rejzner11}{Rejzner 11, (5.14)}) \begin{prop} \label{GaugeFixedActionFunctionalTimeOrderedAntibracket}\hypertarget{GaugeFixedActionFunctionalTimeOrderedAntibracket}{} \textbf{([[time-ordered product|time-ordered]] [[antibracket]] with [[gauge fixing|gauge fixed]] [[action functional]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] (\href{A+first+idea+of+quantum+field+theory#FreeFieldTheory}{this def.}) with [[gauge fixing|gauge fixed]] BV-BRST [[Lagrangian density]] $-\mathbf{L}' + \mathbf{L}'_{BRST}$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) on a graded BV-BRST [[field bundle]] $E_{\text{BV-BRST}} \coloneqq T^\ast[-1]_{\Sigma,inf}(E \times_\Sigma \mathcal{G}[1] \times_{\Sigma} A \times_\Sigma A[-1])$. Then the [[time-ordered product|time-ordered]] [[antibracket]] (def. \ref{AntibracketTimeOrdered}) with the gauge fixed BV-[[action functional]] $-S'$ (def. \ref{ComplexBVBRSTGlobal}) equals the [[conjugation]] of the global [[BV-differential]] with the [[isomorphism]] $\mathcal{T}$ from the pointwise to the [[time-ordered product]] of [[observables]] (from \href{time-ordered+product#IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{this prop.}) \begin{displaymath} \{-S',-\}_{\mathcal{T}} \;=\; \mathcal{T} \circ \{-S',-\} \circ \mathcal{T}^{-1} \,, \end{displaymath} hence \begin{displaymath} \itexarray{ PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] &\overset{ \{-S',-\} }{\longrightarrow}& PoyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \\ {}^{\mathllap{\mathcal{T}}}\downarrow && \downarrow^{\mathrlap{\mathcal{T}}} \\ PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] &\overset{ \{-S',-\}_{\mathcal{T}} }{\longrightarrow}& PoyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] } \end{displaymath} \end{prop} \begin{proof} By the assumption that $(E,\mathbf{L})$ is a [[free field theory]] its [[Euler-Lagrange equations]] are linear in the fields, and hence $S'$ is quadratic in the fields. This means that \begin{displaymath} \mathcal{T}^{-1}S' = S' + const \,, \end{displaymath} where the second term on the right is independent of the fields, and hence that \begin{displaymath} \{\mathcal{T}^{-1}(-S'),-\} = \{-S', - \} \,. \end{displaymath} This implies the claim: \begin{displaymath} \begin{aligned} \{-S',-\}_{\mathcal{T}} & \coloneqq \mathcal{T}\left(\{ \mathcal{T}^{-1}(-S'), \mathcal{T}^{-1}(-) \}\right) \\ & = \mathcal{T}\left(\{ -S', \mathcal{T}^{-1}(-) \}\right) \\ & = \mathcal{T} \circ \{-S',-\} \circ \mathcal{T}^{-1} \,. \end{aligned} \end{displaymath} \end{proof} \begin{defn} \label{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}\hypertarget{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}{} \textbf{([[BV-operator]] for [[gauge fixing|gauge fixed]] [[free field theory|free]] [[Lagrangian field theory]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] (\href{A+first+idea+of+quantum+field+theory#FreeFieldTheory}{this def.}) with [[gauge fixing|gauge fixed]] BV-BRST [[Lagrangian density]] $-\mathbf{L}' + \mathbf{L}'_{BRST}$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) on a graded BV-BRST [[field bundle]] $E_{\text{BV-BRST}} \coloneqq T^\ast[-1]_{\Sigma,inf}(E \times_\Sigma \mathcal{G}[1] \times_{\Sigma} A \times_\Sigma A[-1])$ and with corresponding gauge-fixed global [[BV-BRST differential]] on graded [[regular polynomial observables]] \begin{displaymath} \{-S' + S'_{BRST}, -\} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}). Then the corresponding \emph{[[BV-operator]]} \begin{displaymath} \Delta_{BV} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} on [[regular polynomial observables]] is, up to a factor of $i \hbar$, the difference between the free component $\{-S',-\}$ of the gauge fixed global BV differential and its time-ordered version (def. \ref{AntibracketTimeOrdered}) \begin{displaymath} \Delta_{BV} \;\coloneqq\; \tfrac{1}{i \hbar} \left( \left\{ -S',- \right\}_{\mathcal{T}} - \left\{ -S',(-) \right\} \right) \,, \end{displaymath} hence \begin{equation} \{-S',-\}_{\mathcal{T}} \;=\; \{-S',-\} + i \hbar \Delta_{BV} \,. \label{BVOperatorDefiningRelation}\end{equation} \end{defn} \begin{prop} \label{ComponentsBVOperator}\hypertarget{ComponentsBVOperator}{} \textbf{([[BV-operator]] in components)} If the [[field bundles]] of all [[field (physics)|fields]], [[ghost fields]] and [[auxiliary fields]] are [[trivial vector bundles]], with field/ghost-field/auxiliary-field coordinates collectively denoted $(\phi^A)$ then the [[BV-operator]] $\Delta_{BV}$ from prop. \ref{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator} is given explicitly by \begin{displaymath} \Delta_{BV} \;=\; \underset{a}{\sum} (-1)^{deg(\Phi^A)} \underset{\Sigma}{\int} \frac{\delta}{\delta \Phi^A(x)} \frac{\delta}{\delta \Phi^{\ddagger}_A(y)} dvol_\Sigma \end{displaymath} Since this formula exhibits a graded [[Laplace operator]], the BV-operator is also called the \emph{BV-Laplace operator} or \emph{BV-Laplacian}, for short. \end{prop} (\hyperlink{FredenhagenRejzner11}{Fredenhagen-Rejzner 11, (29)}, \hyperlink{Rejzner11}{Rejzner 11, (5.20)}) \begin{proof} By prop. \ref{GaugeFixedActionFunctionalTimeOrderedAntibracket} we have equivalently \begin{displaymath} i \hbar \Delta_{BV} \;=\; \mathcal{T} \circ \{-S',-\} \circ \mathcal{T}^{-1} \,-\, \{-S',-\} \end{displaymath} and by \href{A+first+idea+of+quantum+field+theory#BVDifferentialGlobal}{this example} the second term on the right is \begin{displaymath} \begin{aligned} \left\{ -S', -\right\} & = \underset{\Sigma}{\int} j^{\infty}\left(\mathbf{\Phi}\right)^\ast \left( \frac{\overset{\leftarrow}{\delta}_{EL} L}{\delta \phi^A} \right)(x) \frac{\delta}{\delta \mathbf{\Phi}^\ddagger_A(x)} \, dvol_\Sigma(x) \\ & = \underset{a}{\sum} (-1)^{deg(\phi^A)} \underset{}{\int} (P\mathbf{\Phi})_A(x) \frac{\delta}{\delta \mathbf{\Phi}^\ddagger_A(x)} \, dvol_\Sigma(x) \end{aligned} \end{displaymath} With this we compute as follows: \begin{equation} \begin{aligned} \{-S',-\}_{\mathcal{T}} & = \mathcal{T} \circ \left\{ -S,-\right\} \circ \mathcal{T}^{-1} \\ & = \exp\left( \left[ \hbar \tfrac{1}{2} \Delta_F \left( \frac{\delta}{\delta \mathbf{\Phi}}, \frac{\delta}{\delta \mathbf{\Phi}} \right) \,,\, - \right] \right) \left( \{-S',-\} \right) \\ & = \{-S',-\} + \left[ \hbar \tfrac{1}{2} \Delta_F \left( \frac{\delta}{\delta \mathbf{\Phi}}, \frac{\delta}{\delta \mathbf{\Phi}} \right) \,, \{-S',-\} \right] + \underset{ = 0 }{\underbrace{\hbar^2(...)}} \\ & = \phantom{+} \left\{ -S' , -\right\} \\ & \phantom{=} + \left[ \tfrac{1}{2}\hbar \underset{\Sigma \times \Sigma}{\int} \Delta_F^{A B}(x,y) \frac{\delta^2}{\delta \mathbf{\Phi}^A(x) \delta \mathbf{\Phi}^B(y)} \, dvol_\Sigma(x) \, dvol_\Sigma(y) \;,\; \underset{a}{\sum} (-1)^{deg(\phi^A)} \underset{\Sigma}{\int} (P\mathbf{\Phi})_A(x) \frac{\delta}{\delta \mathbf{\Phi}^\ddagger_A(x)} \, dvol_\Sigma(x) \right] \\ & = \left\{ -S', -\right\} \\ & \phantom{=} + \underset{A}{\sum} (-1)^{deg(\phi^A)} \underset{\Sigma \times \Sigma}{\int} \underset{ = i \delta(x-y) }{\underbrace{P_x \Delta_F(x,y)}} \frac{\delta}{\delta \mathbf{\Phi}^A(x)} \frac{\delta}{\delta \mathbf{\Phi}^\ddagger_A(y)} \, dvol_\Sigma(x) \, dvol_\Sigma(y) \\ & = \left\{ -S', -\right\} + i \hbar \underset{A}{\sum} (-1)^{deg(\phi^A)} \underset{\Sigma}{\int} \frac{\delta}{\delta \mathbf{\Phi}^A(x)} \frac{\delta}{\delta \mathbf{\Phi}^\ddagger_A(x)} \, dvol_\Sigma(x) \end{aligned} \label{AAA}\end{equation} Here we used \begin{enumerate}% \item under the first brace that by assumption of a [[free field theory]], $\{-S',-\}$ is linear in the fields, so that the first [[commutator]] with the [[Feynman propagator]] is independent of the fields, and hence all the higher commutators vanish; \item under the second brace that the [[Feynman propagator]] is $+i$ times the [[Green function]] for the [[Green hyperbolic differential equation|Green hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[equations of motion]] (\href{A+first+idea+of+quantum+field+theory#GreenFunctionFeynmanPropagator}{this cor.}). \end{enumerate} \end{proof} \hypertarget{InCausalPerturbationTheoryRelationToTimeOrderedAntibracket}{}\paragraph*{{Relation to time-ordered antibracket}}\label{InCausalPerturbationTheoryRelationToTimeOrderedAntibracket} \begin{prop} \label{AntibracketBVOperatorRelation}\hypertarget{AntibracketBVOperatorRelation}{} \textbf{(global [[antibracket]] exhibits failure of [[BV-operator]] to be a [[derivation]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] (\href{A+first+idea+of+quantum+field+theory#FreeFieldTheory}{this def.}) with [[gauge fixing|gauge fixed]] BV-BRST [[Lagrangian density]] $-\mathbf{L}' + \mathbf{L}'_{BRST}$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) on a graded BV-BRST [[field bundle]] $E_{\text{BV-BRST}} \coloneqq T^\ast[-1]_{\Sigma,inf}(E \times_\Sigma \mathcal{G}[1] \times_{\Sigma} A \times_\Sigma A[-1])$ The [[BV-operator]] $\Delta_{BV}$ (def. \ref{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}) and the global [[antibracket]] $\{-,-\}$ (\href{A+first+idea+of+quantum+field+theory#ComplexBVBRSTGlobal}{this def.}) satisfy for all [[polynomial observables]] (\href{A+first+idea+of+quantum+field+theory#PolynomialObservables}{this def.}) $A_1, A_2 \in PolyObs(E_{\text{BV-BRST}})[ [\hbar] ]$ the relation \begin{equation} \{A_1, A_2\} \;=\; (-1)^{deg(A_2)} \, \Delta_{BV}(A_1 \cdot A_2) - (-1)^{deg(A_2)} \, \Delta_{BV}(A_1) \cdot A_2 - A_1 \cdot \Delta_{BV}(A_2) \label{GlobalAntibracketInteractingWithBVOperator}\end{equation} for $(-) \cdot (-)$ the pointwise product of observables (def. \ref{Observable}). Moreover, it commutes on [[regular polynomial observables]] with the [[time-ordered product|time-ordering operator]] $\mathcal{T}$ (\href{time-ordered+product#IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{this prop.}) \begin{displaymath} \Delta_{BV} \circ \mathcal{T} = \mathcal{T} \circ \Delta_{BV} \phantom{AAA} \text{on} \,\, PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} and hence satisfies the analogue of relation \eqref{GlobalAntibracketInteractingWithBVOperator} also for the time-ordered antibracket $\{-,-\}_{\mathcal{T}}$ (def. \ref{AntibracketTimeOrdered}) and the [[time-ordered product]] $\star_F$ on regular polynomial observables \begin{displaymath} \{A_1, A_2\}_{\mathcal{T}} \;=\; (-1)^{deg(A_2)} \, \Delta_{BV}(A_1 \star_F A_2) - (-1)^{deg(A_2)} \Delta_{BV}(A_1) \star_F A_2 - A_1 \star_F \Delta_{BV}(A_2) \,. \end{displaymath} \end{prop} (e.g. \href{antibracket#HenneauxTeitelboim92}{Henneaux-Teitelboim 92, (15.105d)}) \begin{proof} With prop. \ref{ComponentsBVOperator} the first statement is a graded version of the analogous relation for an ordinary [[Laplace operator]] $\Delta \coloneqq g^{a b} \partial_a \partial_b$ acting on [[smooth functions]] on [[Cartesian space]], which on [[smooth functions]] $f,g$ satisfies \begin{displaymath} \Delta(f \cdot g) \;=\; (\nabla f, \nabla g) - \Delta(f) g - f \Delta(g) \,, \end{displaymath} by the [[product law]] for [[differentiation]], where now $\nabla f \coloneqq (g^{a b} \partial_b f)$ is the [[gradient]] and $(v,w) \coloneqq g_{a b} v^a w b$ the [[inner product]]. Here one just needs to carefully record the relative signs that appear. That the BV-operator commutes with the time-ordering operator is clear from the fact that both of these are given by [[partial derivative|partial]] [[functional derivatives]] with \emph{[[constant function|constant]]} [[coefficients]]. This immediately implies the last statement from the first. \end{proof} \begin{example} \label{TimeOrderedExponentialBVOperator}\hypertarget{TimeOrderedExponentialBVOperator}{} \textbf{([[BV-operator]] on [[time-ordered product|time-ordered]] [[exponentials]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] (\href{A+first+idea+of+quantum+field+theory#FreeFieldTheory}{this def.}) with [[gauge fixing|gauge fixed]] BV-BRST [[Lagrangian density]] $-\mathbf{L}' + \mathbf{L}'_{BRST}$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) on a graded BV-BRST [[field bundle]] $E_{\text{BV-BRST}} \coloneqq T^\ast[-1]_{\Sigma,inf}(E \times_\Sigma \mathcal{G}[1] \times_{\Sigma} A \times_\Sigma A[-1])$. Let moreover $V \in PolyObs(E_{\text{BV-BRST}})_{reg, deg = 0}[ [\hbar] ]$ be a [[regular polynomial observable]] (def. \ref{PolynomialObservables}) of degree zero. Then the application of the [[BV-operator]] $\Delta_{BV}$ (def. \ref{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}) to the [[time-ordered product|time-ordered]] [[exponential]] $\exp_{\mathcal{T}}(V)$ (\href{time-ordered+product#RegularObservablesExponentialTimeOrdered}{this example}) is the [[time-ordered product]] of the time-ordered exponential with the sum of $\Delta_{BV}(V)$ and the global [[time-ordered product|time-ordered]] [[antibracket]] $\tfrac{1}{2}\{V,V\}_{\mathcal{T}}$ (def. \ref{AntibracketTimeOrdered}) of $V$ with itself: \begin{displaymath} \Delta_{BV} \left( \exp_{\mathcal{T}}(V) \right) \;=\; \left( \Delta_{BV}(V) + \tfrac{1}{2}\{V,V\}_{\mathcal{T}} \right) \star_F \exp_{\mathcal{T}}(V) \end{displaymath} \end{example} \begin{proof} By prop. \ref{AntibracketBVOperatorRelation} $\Delta_{BV}$ acts as a [[derivation]] on the [[time-ordered product]] up to a correction given by the antibracket of the two factors. This yields the result by the usual combinatorics of [[exponentials]]. \begin{displaymath} \begin{aligned} \Delta_{BV} \left( 1 + V + \tfrac{1}{2}V \star_F V + \cdots \right) & = \Delta_{BV}(V) + \tfrac{1}{2}\left( \Delta_{BV}(V) \star_F V + V \star_F \Delta_{BV}(V) \right) + \tfrac{1}{2}\{V,V\}_{\mathcal{T}} + \cdots \\ & = \Delta_{BV}(V) + \Delta_{BV}(V) \star_F V + \tfrac{1}{2}\{V,V\}_{\mathcal{T}} + \cdots \end{aligned} \end{displaymath} \end{proof} \hypertarget{SchwingerDysonEquation}{}\paragraph*{{Schwinger-Dyson equation}}\label{SchwingerDysonEquation} A special case of the general occurence of the [[BV-operator]] is the following important property of [[on-shell]] [[time-ordered products]]: \begin{prop} \label{DysonSchwinger}\hypertarget{DysonSchwinger}{} \textbf{([[Schwinger-Dyson equation]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] (\href{A+first+idea+of+quantum+field+theory#FreeFieldTheory}{this def.}) with [[gauge fixing|gauge fixed]] BV-BRST [[Lagrangian density]] $-\mathbf{L}' + \mathbf{L}'_{BRST}$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) on a graded BV-BRST [[field bundle]] $E_{\text{BV-BRST}} \coloneqq T^\ast[-1]_{\Sigma,inf}(E \times_\Sigma \mathcal{G}[1] \times_{\Sigma} A \times_\Sigma A[-1])$. Let \begin{equation} A \;\coloneqq\; \underset{\Sigma}{\int} A^a(x) \cdot \mathbf{\Phi}^\ddagger_a(x) \, dvol_\Sigma(x) \;\in\; PolyObs_{reg}(E_{\text{BV-BRST}}) \label{SchwingerDysonTestObservable}\end{equation} be an [[off-shell]] [[regular polynomial observable]] which is [[linear map|linear]] in the [[antifield]] [[field observables]] $\mathbf{\Phi}^\ddagger$. Then \begin{equation} \mathcal{T}^{\pm 1} \left( \underset{\Sigma}{\int} \frac{\delta S'}{\delta \mathbf{\Phi}^a(x)} \cdot A^a(x) \, dvol_\Sigma(x) \right) \;=\; \pm i \hbar \, \mathcal{T}^{\pm} \left( \underset{\Sigma}{\int} \frac{\delta A^a(x)}{\delta \mathbf{\Phi}^a(x)} \, dvol_\Sigma(x) \right) \phantom{A} \in \underset{ \text{on-shell} }{ \underbrace{ PolyObs_{reg}(E_{\text{BV-BRST}}, \mathbf{L'}) }} \,. \label{EquationSchwingerDyson}\end{equation} This is called the \emph{[[Schwinger-Dyson equation]]}. \end{prop} The proof below is due to (\hyperlink{Rejzner16}{Rejzner 16, remark 7.7}), following the informal traditional argument (\hyperlink{HenneauxTeitelboim92}{Henneaux-Teitelboim 92, (15.108b)}). \begin{proof} Applying the inverse time-ordering map $\mathcal{T}^{-1}$ (\href{time-ordered+product#IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{this prop.}) to equation \eqref{BVOperatorDefiningRelation} applied to $A$ yields \begin{equation} \underset{ \mathcal{T}^{-1} \underset{\Sigma}{\int} \frac{\delta S'}{\delta \mathbf{\Phi}^a(x)} \cdot A^a(x) dvol_\Sigma(x) }{ \underbrace{ \mathcal{T}^{-1}\left\{ -S', A\right\} } } \;=\; - \underset{ i \hbar \mathcal{T}^{-1} \underset{\Sigma}{\int} \frac{\delta A^a(x)}{\delta \mathbf{\Phi}^a(x)} \, dvol_\Sigma }{ \underbrace{ i \hbar \mathcal{T}^{-1}\Delta_{BV}(A) } } + \underset{ \{-S',\mathcal{T}^{-1}(A)\} }{ \underbrace{ \mathcal{T}^{-1}\left\{ -S',A\right\}_{\mathcal{T}} } } \label{BVDerivationOfSchwingerDyson}\end{equation} where we have identified the terms under the braces by 1) the component expression for the BV-differential $\{-S',-\}$ from \href{A+first+idea+of+quantum+field+theory#BVDifferentialGlobal}{this prop}, 2) prop. \ref{ComponentsBVOperator} and 3) prop. \ref{GaugeFixedActionFunctionalTimeOrderedAntibracket}. The last term is manifestly in the [[image]] of the [[BV-differential]] $\{-S',-\}$ and hence vanishes when passing to [[on-shell]] observables along the [[isomorphism]] (\href{A+first+idea+of+quantum+field+theory#eq;OnShellPolynomialObservablesAsBVCohomology}{this equation}) \begin{equation} \underset{ \text{on-shell} }{ \underbrace{ PolyObs(E_{\text{BV-BRST}}, \mathbf{L}') }} \;\simeq\; \underset{ \text{off-shell} }{ \underbrace{ PolyObs(E_{\text{BV-BRST}})_{def(af = 0)} }}/im(\{-S',-\}) \label{OnShellObservablesAsQuotientOfOffShellObservablesRecalled}\end{equation} (by \href{A+first+idea+of+quantum+field+theory#BVDifferentialGlobal}{this example.}). The same argument with the replacement $\mathcal{T} \leftrightarrow \mathcal{T}^{-1}$ throughout yields the other version of the equation (with time-ordering instead of reverse time ordering and the sign of the $\hbar$-term reversed). \end{proof} \begin{remark} \label{}\hypertarget{}{} \textbf{(``Schwinger-Dyson operator'')} The proof of the [[Schwinger-Dyson equation]] in prop. \ref{DysonSchwinger} shows that, up to [[time-ordered product|time-ordering]], the [[Schwinger-Dyson equation]] is the on-shell vanishing of the ``quantized'' [[BV-differential]] \eqref{BVOperatorDefiningRelation} \begin{displaymath} \{-S',-\}_{\mathcal{T}} \;=\; \{-S', -\} \,+\, i \hbar \, \Delta_{BV} \,, \end{displaymath} where the [[BV-operator]] is the quantum correction of order $\hbar$. Therefore this is also called the \emph{Schwinger-Dyson operator} (\hyperlink{HenneauxTeitelboim92}{Henneaux-Teitelboim 92, (15.111)}). \end{remark} \begin{remark} \label{SchwingerDysonDistributional}\hypertarget{SchwingerDysonDistributional}{} \textbf{([[distribution|distributional]] [[Schwinger-Dyson equation]])} Often the [[Schwinger-Dyson equation]] (prop. \ref{DysonSchwinger}) is displayed before spacetime-smearing of [[field observables]] in terms of [[operator products]] of [[operator-valued distributions]], taking the observable $A$ in \eqref{SchwingerDysonTestObservable} to be \begin{displaymath} A^a(x) \;\coloneqq\; \delta(x-x_0) \delta^a_{a_0} \mathbf{\Phi}^{a_1}(x_1) \cdots \mathbf{\Phi}^{a_n}(x_n) \,. \end{displaymath} This choice makes \eqref{EquationSchwingerDyson} become the [[distribution|distributional]] [[Schwinger-Dyson equation]] \begin{displaymath} \begin{aligned} & T \left( \frac{\delta S}{\delta \mathbf{\Phi}^{a_0}(x_0)} \cdot \mathbf{\Phi}^{a_1}(x_1) \cdots \mathbf{\Phi}^{a_n}(x_n) \right) \\ & \underset{\text{on-shell}}{=} - i \hbar \underset{k}{\sum} T \left( \mathbf{\Phi}^{a_1}(x_1) \cdots \mathbf{\Phi}^{a_{k-1}}(x_{k-1}) \cdot \delta(x_0 - x_k) \delta^{a_0}_{a_k} \cdot \mathbf{\Phi}^{a_{k+1}}(x_{k+1}) \cdots \mathbf{\Phi}^{a_n}(x_m) \right) \end{aligned} \end{displaymath} (e.q. \href{Schwinger-Dyson+equation#Dermisek09}{Dermisek 09}). In particular this means that if $(x_0,a_0) \neq (x_k, a_k)$ for all $k \in \{1,\cdots ,n\}$ then \begin{displaymath} T \left( \frac{\delta S}{\delta \mathbf{\Phi}^{a_0}(x_0)} \cdot \mathbf{\Phi}^{a_1}(x_1) \cdots \mathbf{\Phi}^{a_n}(x_n) \right) \;=\; 0 \phantom{AAA} \text{on-shell} \end{displaymath} Since by the [[principle of extremal action]] (\href{A+first+idea+of+quantum+field+theory#PrincipleOfExtremalAction}{this prop.}) the equation \begin{displaymath} \frac{\delta S}{\delta \mathbf{\Phi}^{a_0}(x_0)} \;=\; 0 \end{displaymath} is the [[Euler-Lagrange equation|Euler-Lagrange]] [[equation of motion]] (for the [[classical field theory]]) ``at $x_0$'', this may be interpreted as saying that the classical equations of motion for fields at $x_0$ still hold for [[time-ordered product|time-ordered]] [[quantum theory|quantum]] [[expectation values]], as long as all other observables are evaluated away from $x_0$; while if observables do coincide at $x_0$ then there is a correction measured by the [[BV-operator]]. \end{remark} \begin{remark} \label{FreeFieldQuantumShell}\hypertarget{FreeFieldQuantumShell}{} \textbf{(the ``quantum shell'')} Beware that, superficially, it might seem that in equation \eqref{BVDerivationOfSchwingerDyson} not only the term $\{-S',\mathcal{T}^{-1}(A)\}$ on the right vanishes [[on-shell]], but also the term $\mathcal{T}^{-1}\left\{ -S', A\right\}$ on the left, since the latter is the image under the linear map $\mathcal{T}^{-1}$ of an observable that vanishes on-shell. To sort this out, notice that the isomorphism \eqref{OnShellObservablesAsQuotientOfOffShellObservablesRecalled} tells us that the observables that vanish when passing from off-shell to on-shell observables are precisely those in the ideal generated by the image of $\{-S',(-)\}$. But while $\mathcal{T}^{-1}$ is an isomorphism on (regular off-shell observables), it need not (and in general does not) preserve this ideal! Hence $\mathcal{T}^{-1}(\{-S',A\})$ need not (and in general is not) an element of that ideal, and this is why it remains when passing to the algebra of on-shell observables and thus makes its crucial appearance in the [[Schwinger-Dyson equation]]. \end{remark} \hypertarget{quantum_master_equation}{}\paragraph*{{Quantum master equation}}\label{quantum_master_equation} Passing from [[free field theory]] to [[perturbative quantum field theory|perturbative]] [[quantization]] of [[interacting field theory]], the above BV-operator of the underying free field theory appears as a quantum correction to the ``[[classical master equation]]'' which expresses the nilpotency of the [[BV-differential]]. This ``master equation'' corrected by the BV-operator is called the \emph{[[quantum master equation]]}. See \href{quantum+master+equation#QuantumMasterEquation}{this prop.}. \hypertarget{references}{}\subsection*{{References}}\label{references} The concept originates with \begin{itemize}% \item [[Igor Batalin]], [[Grigori Vilkovisky]], \emph{Gauge Algebra and Quantization}, Phys. Lett. B 102 (1): 27--31, 1981 () \end{itemize} Traditional review includes \begin{itemize}% \item [[Marc Henneaux]], [[Claudio Teitelboim]], section 15.5.3 of \emph{[[Quantization of Gauge Systems]]}, Princeton University Press, 1992 \end{itemize} The understanding of the BV-operator in the rigorous formulation of [[relativistic field theory|relativistic]] [[perturbative quantum field theory]] via [[causal perturbation theory]]/[[perturbative AQFT]] is due to \begin{itemize}% \item [[Klaus Fredenhagen]], [[Katarzyna Rejzner]], section 2 of \emph{Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory}, Commun. Math. Phys. (2013) 317: 697 (\href{https://arxiv.org/abs/1110.5232}{arXiv:1110.5232}, \href{https://doi.org/10.1007/s00220-012-1601-1}{doi:10.1007/s00220-012-1601-1}) \item [[Katarzyna Rejzner]], section 5.1.2 of \emph{Batalin-Vilkovisky formalism in locally covariant field theory} (\href{https://arxiv.org/abs/1111.5130}{arXiv:1111.5130}) \end{itemize} surveyed in \begin{itemize}% \item [[Katarzyna Rejzner]], section 7.3 of \emph{[[Perturbative Algebraic Quantum Field Theory]]}, Mathematical Physics Studies, Springer 2016 (\href{https://link.springer.com/book/10.1007%2F978-3-319-25901-7}{web}) \end{itemize} See at \emph{[[BV-formalism]]} for more references. [[!redirects BV-operators]] [[!redirects BV-Laplacian]] [[!redirects BV-Laplacians]] [[!redirects BV-Laplace operator]] [[!redirects BV-Laplace operators]] [[!redirects Schwinger-Dyson operator]] [[!redirects Schwinger-Dyson operators]] \end{document}