\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Banach coalgebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{banach_coalgebras}{}\section*{{Banach coalgebras}}\label{banach_coalgebras} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{the_dual_algebras_of_a_coalgebra}{The dual algebras of a coalgebra}\dotfill \pageref*{the_dual_algebras_of_a_coalgebra} \linebreak \noindent\hyperlink{operators_between_coalgebras}{Operators between coalgebras}\dotfill \pageref*{operators_between_coalgebras} \linebreak \noindent\hyperlink{beyond_coalgebras}{Beyond coalgebras}\dotfill \pageref*{beyond_coalgebras} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Banach coalgebras (or cogebras) are like [[Banach algebras]], but [[coalgebras]]. The [[dual vector space|dual]] of a Banach coalgebra is a Banach algebra (but not conversely). We can also consider Banach [[bialgebras]] (or bigebras). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{Banach coalgebra}, or \textbf{Banach cogebra}, is a [[comonoid object]] in the [[monoidal category]] $Ban$ of [[Banach spaces]] with [[short linear maps]] and the [[projective tensor product]]. (Recall that a [[Banach algebra]] is a [[monoid object]] in $Ban$.) Explicitly, we have: \begin{enumerate}% \item a [[Banach space]] $A$ \item a [[short linear map]], the \textbf{comultiplication}:\begin{displaymath} \Delta\colon A \to A {\displaystyle\hat{\otimes}_\pi} A \end{displaymath} to the [[projective tensor product]]; \item a short [[linear functional]], the \textbf{counit}:\begin{displaymath} \epsilon\colon A \to K , \end{displaymath} where $K$ is the [[ground field]]; \item an [[equation]], the \textbf{coassociativity}:\begin{displaymath} (\Delta {\displaystyle\hat{\otimes}_\pi} \id_A) \Delta x = (\id_A {\displaystyle\hat{\otimes}_\pi} \Delta) \Delta x \in (A {\displaystyle\hat{\otimes}_\pi} A) {\displaystyle\hat{\otimes}_\pi} A \cong A {\displaystyle\hat{\otimes}_\pi} (A {\displaystyle\hat{\otimes}_\pi} A) \end{displaymath} for each $x\colon A$; \item an equation, the \textbf{left coidentity}:\begin{displaymath} (\epsilon {\displaystyle\hat{\otimes}_\pi} \id_A) \Delta x = x \in K {\displaystyle\hat{\otimes}_\pi} A \cong A \end{displaymath} for each $x\colon A$; \item and an equation, the \textbf{right coidentity}:\begin{displaymath} (\id_A {\displaystyle\hat{\otimes}_\pi} \epsilon) \Delta x = x \in A {\displaystyle\hat{\otimes}_\pi} K \cong K \end{displaymath} for each $x\colon A$. \end{enumerate} Technically, we've defined a \textbf{counital coassociative Banach coalgebra}. We can leave out (3,5,6) to get a \textbf{non-counital Banach coalgebra}, and (also) leave out (4) to get a \textbf{non-coassociative Banach coalgebra}. Warning: these terms are examples of the [[red herring principle]]. Note that (3) is a [[property-like structure]] (and 4--6 are obviously just [[properties]]). On the other hand, we can \emph{add} the property of \textbf{cocommutativity}: \begin{itemize}% \item $\tau \Delta x = \Delta x$ for each $x\colon A$, \end{itemize} where the [[braiding]] $\tau\colon A {\displaystyle\hat{\otimes}_\pi} A \to A {\displaystyle\hat{\otimes}_\pi} A$ is generated by $\tau (u \otimes v) = v \otimes u$. Then we have a \textbf{cocommutative Banach coalgebra}. To \textbf{freely adjoin a counit} to a non-counital Banach coalgebra $A$, take the Banach space $A \oplus_1 K$ (using the $l^1$-[[l-1-direct sum|direct sum]]), let $\Delta_{A \oplus K} (x,c)$ be $(\Delta_A x, 0, 0, c) \in (A {\displaystyle\hat{\otimes}_\pi} A) \oplus_1 A \oplus_1 A \oplus_1 K \cong (A \oplus_1 K) {\displaystyle\hat{\otimes}_\pi} (A \oplus_1 K)$, and let $\epsilon_{A \oplus_1 K} (x,c)$ be $c$. Then $A \oplus_1 K$ is a counital Banach coalgebra. (Freely forcing coassociativity or cocommutativity ---or even freely adjoining $\Delta$ in the first place--- is harder.) The [[category]] \textbf{$Ban Coalg$} of Banach coalgebras has, as [[objects]], Banach coalgebras and, as [[morphisms]], [[short linear maps]] $f\colon A \to B$ with equations \begin{displaymath} \Delta_B f x = (f {\displaystyle\hat{\otimes}_\pi} f) \Delta_A x \end{displaymath} and (unless we are allowing non-counital coalgebras) \begin{displaymath} \epsilon_B f x = \epsilon_A x \end{displaymath} for all $x\colon A$. Warning: the term `homomorphism' is used more generally; see below. If $A$ and $B$ are Banach coalgebras, then their \textbf{[[projective tensor product]]} $A {\displaystyle\hat{\otimes}_\pi} B$ is a Banach coalgebra, generated by \begin{displaymath} \Delta_{A {\displaystyle\hat{\otimes}_\pi} B} (x \otimes y) = \Delta_A x \otimes \Delta_B y \in (A {\displaystyle\hat{\otimes}_\pi} A) {\displaystyle\hat{\otimes}_\pi} (B {\displaystyle\hat{\otimes}_\pi} B) \cong (A {\displaystyle\hat{\otimes}_\pi} B) {\displaystyle\hat{\otimes}_\pi} (A {\displaystyle\hat{\otimes}_\pi} B) \end{displaymath} and \begin{displaymath} \epsilon_{A {\displaystyle\hat{\otimes}_\pi} B} (x \otimes y) = (\epsilon_A x) (\epsilon_B y) \in K . \end{displaymath} Similarly (but more simply), the [[ground field]] $K$ is itself a Banach coalgebra, with $\Delta$ and $\epsilon$ both essentially the [[identity map]]. In this way, $Ban Coalg$ becomes a [[symmetric monoidal category]]. The [[full subcategory]] $Cocomm Ban Coalg$ of cocommutative Banach coalgebras becomes a [[cartesian monoidal category]] under the projective tensor product. Actually, $K$ is the [[terminal object]] even in $Ban Coalg$ (with the unique coalgebra morphism to $K$ being $\epsilon$ itself), but the [[pairing]] \begin{displaymath} (f,g)(x) \coloneqq (f {\displaystyle\hat{\otimes}_\pi} g) \Delta x \in A {\displaystyle\hat{\otimes}_\pi} B \end{displaymath} (given $f\colon \Gamma \to A$, $g\colon \Gamma \to B$, and $x\colon \Gamma$) is a morphism of $Ban Coalg$ only when $A$ and $B$ are cocommutative. (I believe that $Ban Coalg$ \emph{does} have a [[product]], but it must be more complicated.) \hypertarget{the_dual_algebras_of_a_coalgebra}{}\subsection*{{The dual algebras of a coalgebra}}\label{the_dual_algebras_of_a_coalgebra} If $A$ is a Banach coalgebra, then the [[dual vector space]] $A^*$ is a [[Banach algebra]]. Actually, this is more general than $A^* = [A,K]$; if $B$ is any Banach algebra, then so is $[A,B]$ (the Banach space of [[bounded linear maps]] from $A$ to $B$). This result is nothing special about Banach (co)algebras; it holds in any [[closed monoidal category]]. The multiplication operation in $[A,B]$ is given by \begin{displaymath} (\lambda \mu) x = m (\lambda {\displaystyle\hat{\otimes}_\pi} \mu) \Delta x , \end{displaymath} where $m\colon B {\displaystyle\hat{\otimes}_\pi} B \to B$ is (generated by) the multiplication operation on $B$. $[A,B]$ is associative, unital, or commutative if $A$ and $B$ are (with `co' in the names of $A$'s properties). In particular, $A^*$ has one of these properties iff $A$ has the corresponding property. Note that $[B,A]$ (or even $B^*$) is \emph{not}, in general, a Banach coalgebra. (That's because $Ban$ is closed, not [[coclosed category|coclosed]].) \hypertarget{operators_between_coalgebras}{}\subsection*{{Operators between coalgebras}}\label{operators_between_coalgebras} Let $A$ and $B$ be Banach coalgebras. Of course, $A$ and $B$ are [[Banach spaces]], so we may consider the whole panoply of [[linear operators]] from $A$ to $B$. In general, a linear operator is only a [[partial function]], defined on a [[linear subspace]] of $A$ (and otherwise only required to be a [[linear map]]); but in particular we consider the [[densely-defined operator]]s (each defined on a [[dense subspace|dense]] subspace of $A$), the [[linear mappings]] (each defined on all of $A$), the [[bounded operators]] (each defined on all of $A$ and [[bounded map|bounded]] or equivalently [[continuous map|continuous]]), and the [[short operators]] (each bounded with a [[norm]] at most $1$). A \textbf{comultiplicative linear operator} from $A$ to $B$ is a linear operator $T\colon A \to B$ such that the following hold for all $x \in \dom T$: * $\Delta x \in (\dom T) {\displaystyle\hat{\otimes}_\pi} (\dom T)$, * $\Delta_B T x = (T {\displaystyle\hat{\otimes}_\pi} T) \Delta_A x$ (which exists by the previous line), and * $\epsilon_B T x = \epsilon_A x$ (which always exists). We can also consider \textbf{densely-defined comultplicative linear operators}. A \textbf{coalgebra homomorphism}, or \textbf{cohomomorphism}, is a comultiplicative linear mapping; we can also consider \textbf{bounded homomorphisms} and \textbf{short homomorphisms}. The last of these are, as above, the [[morphisms]] in $Ban Coalg$; of course, any of these classes of operators (except the densely-defined ones, which are not closed under [[composition]]) could be taken to be morphisms of a different category with the same objects, but then we would have [[isomorphisms]] that are not [[isometries]]. (See also [[isomorphism of Banach spaces]].) \hypertarget{beyond_coalgebras}{}\subsection*{{Beyond coalgebras}}\label{beyond_coalgebras} A \textbf{Banach [[bialgebra]]}, or \textbf{Banach bigebra}, is a [[bimonoid]] in $Ban$: a Banach space $A$ equipped with the structures of both a [[Banach algebra]] and a Banach coalgebra, such that $\Delta$ and $\epsilon$ are both morphisms of Banach algebras, or equivalently such that the multiplication and unit of the Banach algebra are both morphisms of Banach coalgebras. Explicitly, this requirement is: * $\Delta (x y) = (\Delta x) (\Delta y)$ (with the induced multiplication on $A {\displaystyle\hat{\otimes}_\pi} A$), * $\Delta 1 = 1 \otimes 1$ (which is the identity in $A {\displaystyle\hat{\otimes}_\pi} A$), * $\epsilon (x y) = (\epsilon x) (\epsilon y)$ (with the multiplication on the right in $K$), and * $\epsilon 1 = 1$ (with the $1$ on the right in $K$). The [[category]] \textbf{$Ban Bialg$} of Banach bialgebras has, as objects, Banach bialgebras and, as morphisms, short linear maps that are morphisms of both Banach algebras and Banach coalgebras. A \textbf{Banach [[Hopf algebra]]} is a [[Hopf object]] in $Ban$: a Banach bialgebra $A$ with a (necessarily unique) short linear map (the \textbf{antipode}) $S\colon A \to A$ such that \begin{displaymath} m (S {\displaystyle\hat{\otimes}_\pi} \id) \Delta x, m (\id {\displaystyle\hat{\otimes}_\pi} S) \Delta x = 1 \epsilon x \end{displaymath} (where $m$ is the multiplication with identity $1$) for all $x\colon A$. The [[category]] \textbf{$Ban Hopf Alg$} of Banach Hopf algebras has, as objects, Banach Hopf algebras and, as morphisms, short linear maps $f\colon A \to B$ that are morphisms of Banach bialgebras and preserve antipodes: \begin{displaymath} f (S_A x) = S_B (f x) \end{displaymath} for all $x\colon A$. A \textbf{Banach $*$-[[star-algebra|coalgebra]]} is a $*$-[[star-monoid object|monoid object]] in $Ban$: a Banach coalgebra $A$ equipped with an [[antilinear map]] (the \textbf{adjoint}) $x \mapsto x^*\colon A \to A$ such that \begin{displaymath} \Delta x^* = (\tau \Delta x)^* \end{displaymath} (where $\tau$ again is the [[braiding]] and $*$ on $A {\displaystyle\hat{\otimes}_\pi} A$ is generated by $(x \otimes y)^* = x^* \otimes y^*$) for all $x\colon A$ and \begin{displaymath} \epsilon x^* = \overline {\epsilon x} \end{displaymath} (where a bar indicates [[complex conjugation]]) for all $x\colon A$. The [[category]] \textbf{$Ban {*} Coalg$} of Banach $*$-coalgebras has, as objects, Banach $*$-coalgebras and, as morphisms, short linear maps $f\colon A \to B$ that are morphisms of Banach bialgebras and preserve adjoints: \begin{displaymath} f(x^*) = f(x)^* \end{displaymath} for all $x\colon A$. There are also $C^*$-[[C-star-coalgebra|coalgebras]], which have their own page. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} It's well known that the [[sequence space]] $l^1$ of absolutely summable [[infinite sequences]], thought of as $l^1(\mathbb{Z})$ (where $\mathbb{Z}$ is the [[abelian group]] of [[integers]] under addition), is a [[Banach algebra]] under [[convolution]]; however, it is also a Banach coalgebra, and these structures together make it a Banach bialgebra, in fact a Banach Hopf $*$-algebra. Since $l^1$ is a Banach coalgebra, its [[dual vector space|dual space]] $l^\infty$ (the sequence space of absolutely bounded sequences) is a Banach algebra (which is also well known); and although there is no guarantee that it should work, in this case $l^\infty$ is also a Banach coalgebra, and indeed a Banach Hopf $*$-algebra too. Explicitly: The projective tensor square $l^1 {\displaystyle\hat{\otimes}_\pi} l^1$ is the space of absolutely summable infinite [[matrix|matrices]]; convolution takes the matrix $(a_{i,j})_{i,j}$ to the sequence \begin{displaymath} (\sum_{i + j = k} a_{i,j})_k \end{displaymath} (summing along antidiagonals); comultiplication takes $(a_k)_k$ to the [[diagonal matrix]] \begin{displaymath} \Delta a = (\sum_{i = j = k} a_k)_{i,j} \end{displaymath} (which is not quite the origin of the symbol `$\Delta$' but might as well be). The tensor square $l^\infty {\displaystyle\hat{\otimes}_\pi} l^\infty$ is the space of infinite matrices with absolutely bounded entries; (comment added 26-08-2012 by YC: I am not convinced; Grothendieck's inequality, anyone?) the dual multiplication on $l^\infty$ takes the matrix $(a_{i,j})_{i,j}$ to the sequence \begin{displaymath} (\sum_{i = j = k} a_{i,j})_k = (a_{k,k})_k \end{displaymath} of its diagonal entries; the dual comultiplication (which part of me wants to call `nvolution', but let's say coconvolution instead) takes $(a_k)_k$ to \begin{displaymath} (\sum_{i + j = k} a_k)_{i,j} = (a_{i + j})_{i,j} \end{displaymath} (so each antidiagonal is constant). We are lucky that coconvolution exists, since the dual of a Banach algebra need not be a Banach coalgebra; but arguably coconvolution is easier to describe than convolution, so let us shift perspective and take coconvolution as basic. Then convolution necessarily exists on the dual of $l^\infty$, but (at least in [[classical mathematics]]) $l^1$ is only a subspace of that. So from this perspective, what's lucky is that $l^1$ is closed under convolution. (In [[dream mathematics]], $l^1$ is the entire dual of $l^\infty$, so no luck is required.) Of course, $l^1$ \emph{is} the dual of $c_0$ (the space of sequences with limit $0$), but $c_0$ is \emph{not} closed (coclosed?) under coconvolution (try any non-zero example), so we are still lucky. [[!redirects Banach coalgebra]] [[!redirects Banach coalgebras]] [[!redirects Banach cogebra]] [[!redirects Banach cogebras]] [[!redirects BanCoalg]] [[!redirects Ban Coalg]] [[!redirects Banach bialgebra]] [[!redirects Banach bialgebras]] [[!redirects Banach bigebra]] [[!redirects Banach bigebras]] [[!redirects Banach Hopf algebra]] [[!redirects Banach Hopf algebras]] [[!redirects Banach-Hopf algebra]] [[!redirects Banach-Hopf algebras]] [[!redirects Banach–Hopf algebra]] [[!redirects Banach–Hopf algebras]] [[!redirects Banach--Hopf algebra]] [[!redirects Banach--Hopf algebras]] [[!redirects Banach \emph{coalgebra]] [[!redirects Banach}coalgebras]] [[!redirects Banach \emph{cogebra]] [[!redirects Banach}cogebras]] [[!redirects Banach \emph{-coalgebra]] [[!redirects Banach}-coalgebras]] [[!redirects Banach \emph{-cogebra]] [[!redirects Banach}-cogebras]] [[!redirects Banach * coalgebra]] [[!redirects Banach * coalgebras]] [[!redirects Banach * cogebra]] [[!redirects Banach * cogebras]] [[!redirects Banach star-coalgebra]] [[!redirects Banach star-coalgebras]] [[!redirects Banach star-cogebra]] [[!redirects Banach star-cogebras]] [[!redirects Banach star coalgebra]] [[!redirects Banach star coalgebras]] [[!redirects Banach star cogebra]] [[!redirects Banach star cogebras]] \end{document}