\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Banach space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{banach_spaces}{}\section*{{Banach spaces}}\label{banach_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{banach_spaces_as_metric_spaces}{Banach spaces as metric spaces}\dotfill \pageref*{banach_spaces_as_metric_spaces} \linebreak \noindent\hyperlink{morphisms}{Maps between Banach spaces}\dotfill \pageref*{morphisms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{operations_on_banach_spaces}{Operations on Banach spaces}\dotfill \pageref*{operations_on_banach_spaces} \linebreak \noindent\hyperlink{integration_in_banach_spaces}{Integration in Banach spaces}\dotfill \pageref*{integration_in_banach_spaces} \linebreak \noindent\hyperlink{bochner_integral}{Bochner integral}\dotfill \pageref*{bochner_integral} \linebreak \noindent\hyperlink{the_spectral_integral}{The spectral integral}\dotfill \pageref*{the_spectral_integral} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_bornological_spaces}{Relation to bornological spaces}\dotfill \pageref*{relation_to_bornological_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A Banach space $\mathcal{B}$ is both a [[vector space]] (over a [[normed field]] such as $\mathbb{R}$) and a [[complete space|complete]] [[metric space]], in a compatible way. Hence a complete [[normed vector space]]. A source of simple Banach spaces comes from considering a [[Cartesian space]] $\mathbb{R}^n$ (or $K^n$ where $K$ is the normed field) with the norm: \begin{displaymath} {\|(x_1,\ldots,x_n)\|_p} \coloneqq \root p {\sum_{i = 1}^n {|x_i|^p}} \end{displaymath} where $1 \leq p \leq \infty$ (this doesn't strictly make sense for $p = \infty$, but taking the limit as $p \to \infty$ and reading $\mathbb{R}^\infty = \underset{\longrightarrow}{\lim}_n \mathbb{R}^n$ as the [[direct limit]] (as opposed to the [[inverse limit]]) we arrive at the formula ${\|(x_1,\ldots,x_n)\|_\infty} \coloneqq \max_i {|x_i|}$). However, the theory of these spaces is not much more complicated than that of finite-dimensional vector spaces because they all have the same underlying topology. When we look at infinite-dimensional examples, however, things become trickier. Common examples are [[Lebesgue spaces]], [[Hilbert spaces]], and [[sequence spaces]]. In the literature, one most often sees Banach spaces over the field $\mathbb{R}$ of [[real numbers]]; Banach spaces over the field $\mathbb{C}$ of [[complex numbers]] are not much different, since they are also over $\mathbb{R}$. But people do study them over [[p-adic numbers]] too. \emph{Unless otherwise stated, we assume $\mathbb{R}$ below.} \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $V$ be a [[vector space]] over the field of [[real number]]s. (One can generalise the choice of [[field]] somewhat.) A \textbf{pseudonorm} (or \textbf{[[seminorm]]}) on $V$ is a function \begin{displaymath} {\| - \|}\colon V \to \mathbb{R} \end{displaymath} such that: \begin{enumerate}% \item ${\|0\|} \leq 0$; \item ${\|r v\|} = {|r|} {\|v\|}$ (for $r$ a [[scalar]] and $v$ a vector); \item ${\|v + w\|} \leq {\|v\|} + {\|w\|}$. \end{enumerate} It follows from the above that ${\|v\|} \geq 0$; in particular, ${\|0\|} = 0$. A \textbf{[[norm]]} is a pseudonorm that satisfies a converse to this: $v = 0$ if ${\|v\|} = 0$. A [[norm]] on $V$ is \textbf{complete} if, given any infinite [[sequence]] $(v_1, v_2, \ldots)$ such that \begin{equation} \lim_{m,n\to\infty} {\left\| \sum_{i=m}^{m+n} v_i \right\|} = 0 , \label{Cauchy}\end{equation} there exists a (necessarily unique) \textbf{sum} $S$ such that \begin{equation} \lim_{n\to\infty} {\left\| S - \sum_{i=1}^n v_i \right\|} = 0 ; \label{converge}\end{equation} we write \begin{displaymath} S = \sum_{i=1}^\infty v_i \end{displaymath} (with the right-hand side undefined if no such sum exists). Then a \textbf{Banach space} is simply a vector space equipped with a complete norm. As in the real line, we have in a Banach space that \begin{displaymath} {\left\| \sum_{i=1}^\infty v_i \right\|} \leq \sum_{i=1}^\infty {\|v_i\|} , \end{displaymath} with the left-hand side guaranteed to exist if the right-hand side exists as a finite real number (but the left-hand side may exist even if the right-hand side diverges, the usual distinction between absolute and conditional convergence). If we do not insist on the space being complete, we call it a \textbf{normed (vector) space}. If we have a [[topological vector space]] such that the topology comes from a norm, but we do not make an actual choice of such a norm, then we talk of a \textbf{normable space}. \hypertarget{banach_spaces_as_metric_spaces}{}\subsubsection*{{Banach spaces as metric spaces}}\label{banach_spaces_as_metric_spaces} The three axioms for a pseudonorm are very similar to the three axioms for a [[pseudometric]]. Indeed, in any pseudonormed vector space, let the \textbf{distance} $d(v,w)$ be \begin{displaymath} d(v,w) = {\|w - v\|} . \end{displaymath} Then $d$ is a pseudometric, which is \textbf{translation-invariant} in that \begin{displaymath} d(v+x,w+x) = d(v,w) \end{displaymath} always holds. Conversely, given any translation-invariant pseudometric $d$ on a vector space $V$, let ${\|v\|}$ be \begin{displaymath} {\|v\|} = d(0,v) . \end{displaymath} Then ${\|-\|}$ satisfies the axioms (1--3) for a pseudonorm, except that it may satisfy (2) only for $r = 0, \pm 1$. (In other words, it is only a [[G-pseudonorm]].) It will actually be a pseudonorm iff the pseudometric satisfies a homogeneity rule: \begin{displaymath} d(r v,r w) = {|r|} d(v,w) . \end{displaymath} Thus pseudonorms correspond precisely to homogeneous translation-invariant pseudometrics. Similarly, norms correspond to homogenous translation-invariant metrics and complete norms correspond to complete homogeneous translation-invariant metrics. Indeed, \eqref{Cauchy} says that the sequence of partial sums is a [[Cauchy sequence]], while \eqref{converge} says that the sequence of partial sums converges to $S$. Thus a Banach space may equivalently be defined as a vector space equipped with a complete homogeneous translation-invariant metric. Actually, one usually sees a sort of hybrid approach: a Banach space is a normed vector space whose corresponding metric is complete. \hypertarget{morphisms}{}\subsubsection*{{Maps between Banach spaces}}\label{morphisms} If $V$ and $W$ are pseudonormed vector spaces, then the \textbf{norm} of a linear function $f\colon V \to W$ may be defined in either of these equivalent ways: \begin{itemize}% \item ${\|f\|} = \sup \{ {\|f v\|} \;|\; {\|v\|} \leq 1 \}$; \item ${\|f\|} = \inf \{ r \;|\; \forall{v},\; {\|f v\|} \leq r {\|v\|} \}$. \end{itemize} (Some other forms are sometimes seen, but these may break down in degenerate cases.) For finite-dimensional spaces, any linear map has a well-defined finite norm. In general, the following are equivalent: \begin{itemize}% \item $f$ is [[continuous map|continuous]] (as measured by the pseudometrics on $V$ and $W$) at $0$; \item $f$ is continuous (everywhere); \item $f$ is [[uniformly continuous map|uniformly continuous]]; \item $f$ is [[Lipschitz map|Lipschitz continuous]]; \item ${\|f\|}$ is finite (and, in [[constructive mathematics]], [[located real number|located]]); \item $f$ is [[bounded map|bounded]] (as measured by the [[bornologies]] given by the pseudometrics on $V$ and $W$). \end{itemize} In this case, we say that $f$ is \textbf{bounded}. If $f\colon V \to W$ is not assumed to be linear, then the above conditions are no longer equivalent. The bounded linear maps from $V$ to $W$ themselves form a pseudonormed vector space $\mathcal{B}(V,W)$. This will be a Banach space if (and, except for degenerate cases of $V$, only if) $W$ is a Banach space. In this way, the category $Ban$ of Banach spaces is a [[closed category]] with $\mathbb{R}$ as the unit. The clever reader will note that we have not yet defined $\mathbf{Ban}$ as a category! (surprisingly in the \emph{nLab}) There are many (nonequivalent) ways to do so. In [[functional analysis]], the usual notion of `[[isomorphism]]' for Banach spaces is a bounded bijective linear map $f\colon V \to W$ such that the [[inverse function]] $f^{-1}\colon W \to V$ (which is necessarily linear) is also bounded. In this case one can accept all bounded linear maps between Banach spaces as morphisms. Analysts sometimes refer to this as the ``isomorphic category''. Another natural notion of isomorphism is a surjective linear isometry. In this case, we take a morphism to be a \textbf{[[short map|short]]} [[linear map]], or [[short linear map|linear contraction]]: a linear map $f$ such that ${\|f\|} \leq 1$. This category, which is what category theorists generally refer to as $\mathbf{Ban}$, is sometimes referred to as the ``isometric category'' by analysts. Note that this makes the `underlying set' (in the sense of $\mathbf{Ban}$ as a [[concrete category]] like any closed category) of a Banach space its (closed) \textbf{unit ball} \begin{displaymath} Hom_Ban(\mathbb{R},V) \cong \{ v \;|\; {\|v\|} \leq 1 \} \end{displaymath} rather than the set of all vectors in $V$ (the underlying set of $V$ as a vector space). Yemon Choi: This is really here to remind myself how to make query boxes. But while I'm at it, is it really OK to refer to the ``unit ball functor'' as ``taking the underlying set''? I notice that on the discussion about internal homs at [[internal hom]] it is claimed that ``Every closed category is a [[concrete category]] (represented by $I$), and the underlying set of the internal hom is the external hom'' which seems to require ``underlying set'' to be interpreted in this looser sense. \emph{Toby}: Sure, but the point of putting `underlying set' in scare quotes is precisely to point out that the category-theoretic underlying set is not what one would normally expect. Mark Meckes: I've expanded this section in part to be consistent with analysts' terminology. I've made some assumptions about category theorists' conventions which might not be correct. (If I find time I might write about other categories of Banach spaces that analysts think about.) \emph{Toby}: Looks good to me! From a category-theorist's perspective, the isomorphic category is really the [[full image]] of the [[inclusion functor]] from $Ban$ to $TVS$ (the category of [[topological vector spaces]]), which may be denoted $Ban_{TVS}$. If you're working in $Ban_{TVS}$, then you only care about the topological linear structure of your space (although you do also care that it can be derived from some metric); if you're working in $Ban$, then you care about all of the structure on the space. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Many examples of Banach spaces are parametrised by an exponent $1 \leq p \leq \infty$. (Sometimes one can also try $0 \leq p \lt 1$, but these generally don't give Banach spaces.) \begin{itemize}% \item The [[Cartesian space]] $\mathbb{R}^n$ is a Banach space with \begin{displaymath} {\|(x_1,\ldots,x_n)\|_p} = \root p {\sum_i {|x_i|^p}} . \end{displaymath} (We can allow $p = \infty$ by taking a limit; the result is that ${\|x\|_\infty} = \max_i {|x_i|}$.) Every finite-dimensional Banach space is isomorphic to this for some $n$ and $p$; in fact, once you fix $n$, the value of $p$ is irrelevant up to isomorphism. \item The [[sequence space]] $l^p$ is the set of infinite [[sequence]]s $(x_1,x_2,\ldots)$ of real numbers such that \begin{displaymath} {\|(x_1,x_2,\ldots)\|_p} = \root p {\sum_i {|x_i|^p}} \end{displaymath} exists as a finite real number. (The only question is whether the sum converges. Again $p = \infty$ is a limit, with the result that ${\|x\|_\infty} = \sup_i {|x_i|}$.) Then $l^p$ is a Banach space with that norm. These are all versions of $\mathbb{R}^\infty$, but they are no longer isomorphic for different values of $p$. (See [[isomorphism classes of Banach spaces]].) \item More generally, let $A$ be any [[set]] and let $l^p(A)$ be the set of [[function]]s $f$ from $A$ to $\mathbb{R}$ such that \begin{displaymath} {\|f\|_p} = \root p {\sum_{x: A} {|f(x)|^p}} \end{displaymath} exists as a finite real number. (Again, ${\|f\|_\infty} = \sup_{x\colon A} {|f(x)|}$.) Then $l^p(A)$ is a Banach space. (This example includes the previous examples, for $A$ a countable set.) \item On any [[measure space]] $X$, the [[Lebesgue space]] $\mathcal{L}^p(X)$ is the set of measurable almost-everywhere-defined real-valued functions on $X$ such that \begin{displaymath} {\|f\|_p} = \root p {\int {|f|^p}} \end{displaymath} exists as a finite real number. (Again, the only question is whether the integral converges. And again $p = \infty$ is a limit, with the result that ${\|f\|_\infty}$ is the [[essential supremum]] of ${|f|}$.) As such, $\mathcal{L}^p(X)$ is a complete pseudonormed vector space; but we identify functions that are equal almost everywhere to make it into a Banach space. (This example includes the previous examples, for $X$ a set with counting measure.) \item Any [[Hilbert space]] is Banach space; this includes all of the above examples for $p = 2$. \end{itemize} \hypertarget{operations_on_banach_spaces}{}\subsection*{{Operations on Banach spaces}}\label{operations_on_banach_spaces} The category $Ban$ of Banach spaces is [[complete category|small complete]], [[cocomplete category|small cocomplete]], and [[symmetric monoidal closed category|symmetric monoidal closed]] with respect to its standard internal hom (described at [[internal hom]]). Some details follow. \begin{itemize}% \item The category of Banach spaces admits small [[product]]s. Given a small family of Banach spaces $\{X_\alpha\}_{\alpha \in A}$, its product in $Ban$ is the subspace of the vector-space product \begin{displaymath} \prod_{\alpha \in A} X_\alpha \end{displaymath} consisting of $A$-tuples $\langle x_\alpha \rangle$ which are \emph{uniformly} bounded (i.e., there exists $C$ such that $\forall \alpha \in A: {\|x_\alpha\|} \leq C$), taking the least such upper bound as the norm of $\langle x_\alpha \rangle$. This norm is called the $\infty$-norm; in particular, the product of an $A$-indexed family of copies of $\mathbb{R}$ or $\mathbb{C}$ is what is normally denoted as $l^{\infty}(A)$. \item The category of Banach spaces admits [[equalizer]]s. Indeed, the equalizer of a pair of maps $f, g: X \rightrightarrows Y$ in $Ban$ is the [[kernel]] of $f-g$ under the norm inherited from $X$ (the kernel is closed since $f-g$ is continuous, and is therefore complete). In fact every equalizer is even a [[section]] by the [[Hahn-Banach theorem]]. Every [[extremal monomorphism]] is even already an equalizer (and a section): Let $f\colon X \to Y$ be an extremal monomorphism, $\iota\colon \Im(f) \to Y$ the embedding of $Im(f)$ into the codomain of $f$ and $f\prime \colon X \to Im(f)$ $f$ with restricted codomain. Since $f\prime$ is an epimorphism, $f=\iota f\prime$, and $f$ extremal, $f\prime$ is an isomorphism, thus $f$ is an embedding. \item The category of Banach spaces admits small [[coproduct]]s. Given a small family of Banach spaces $\{X_\alpha\}_{\alpha \in A}$, its coproduct in $Ban$ is the completion of the vector space coproduct \begin{displaymath} \bigoplus_{\alpha \in A} X_\alpha \end{displaymath} with respect to the norm given by \begin{displaymath} {\left\| \bigoplus_{s \in S} x_s \right\|} = \sum_{s \in S} {\|x_s\|} , \end{displaymath} where $S \subseteq A$ is finite and ${\|x_s\|}$ denotes the norm of an element in $X_s$. This norm is called the $1$-norm; in particular, the coproduct of an $A$-indexed family of copies of $\mathbb{R}$ or $\mathbb{C}$ is what is normally denoted as $l^1(A)$. \item The category of Banach spaces admits [[coequalizer]]s. Indeed, the coequalizer of a pair of maps $f, g: X \rightrightarrows Y$ is the [[cokernel]] of $f-g$ under the quotient norm (in which the norm of a coset $y + C$ is the minimum norm attained by elements of $y + C$; here $C$ is the [[image]] $(f-g)(X)$, which is closed). It is standard that the quotient norm on $Y/C$ is complete given that the norm on $Y$ is complete. \item To describe the tensor product $X \otimes_{Ban} Y$ of two Banach spaces (making $Ban$ symmetric monoidal closed with respect to its usual internal hom), let $F(X \times Y)$ be the free vector space generated by the set $X \times Y$, with norm on a typical element defined by \begin{displaymath} {\left\| \sum_{1 \leq i \leq n} a_i (x_i \otimes y_i) \right\|} = \sum_{1 \leq i \leq n} {|a_i|} {\|x_i\|} \cdot {\|y_i\|}. \end{displaymath} Let $\overline{F}(X \times Y)$ denote its completion with respect to this norm. Then take the cokernel of $\overline{F}(X \times Y)$ by the closure of the subspace spanned by the obvious bilinear relations. This quotient is $X \otimes_{Ban} Y$. \end{itemize} In the literature on Banach spaces, tensor product above is usually called the \textbf{projective tensor product} of Banach spaces; see other [[tensor product of Banach spaces]]. The product and coproduct are considered \textbf{direct sums}; see other [[direct sums of Banach spaces]]. To be described: \begin{itemize}% \item duals ($p + q = p q$); \item completion ($Ban$ is a [[reflective subcategory]] of $PsNVect$ (pseudo-normed vector spaces)). \item $Ban$ as a (somewhat larger) category with duals. \end{itemize} \hypertarget{integration_in_banach_spaces}{}\subsection*{{Integration in Banach spaces}}\label{integration_in_banach_spaces} This paragraph describes some aspects of integration theory in Banach spaces that are relevant to understand the literature about [[AQFT]]. In the given context, elements of a Banach space $\mathcal{B}$ are sometimes called vectors, a function or measure taking values in $\mathcal{B}$ are therefore called vector functions and vector measures. Functions and measures taking values in the [[field]] that the Banach space is defined upon as a vector space are called scalar functions and scalar measures. We will consider two types of integrals: \begin{itemize}% \item integrals of vector functions with respect to a scalar measure, specifically the Bochner integral, \item integrals of scalar functions with respect to a vector measure, specifically the spectral integral of a normal operator on a Hilbert space. \end{itemize} \hypertarget{bochner_integral}{}\subsubsection*{{Bochner integral}}\label{bochner_integral} The Bochner integral is a direct generalization of the Lesbegue integral to functions that take values in a Banach space. Whenever you encounter an integral of a function taking values in a Banach space in the [[AQFT]] literature, it is safe to assume that it is meant to be a Bochner integral. Two points already explained by Wikipedia are of interest: \begin{enumerate}% \item A version of the dominated convergence theorem is true for the Bochner integral. \item There are theorems that are not valid for the Bochner integral, notably the Radon-Nikodym theorem does not hold in general. \end{enumerate} \begin{itemize}% \item \href{http://en.wikipedia.org/wiki/Bochner_integral}{Wikipedia} \end{itemize} \emph{reference}: Joseph Diestel: ``Sequences and Series in Banach Spaces'' (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0542.46007&format=complete}{ZMATH entry}), chapter IV. \hypertarget{the_spectral_integral}{}\subsubsection*{{The spectral integral}}\label{the_spectral_integral} The integral with respect to the spectral measure of a bounded normal operator on a Hilbert space is an example of a Banach space integral with respect to a vector measure. In this paragraph we present a well known, but somewhat less often cited result, that is of use in some proofs in some approaches to [[AQFT]], it is the version of the dominated convergence theorem for the given setting. Let A be a bounded normal operator on a Hilbert space and E be it's spectral measure (the ``resolution of identity'' in the terms of Dunford and Schwartz). Let $\sigma(A)$ be the spectrum of A. For a bounded complex Borel function f we then have \begin{displaymath} f(A) \coloneqq \int_{\sigma(A)} f(\lambda) E(d\lambda) \end{displaymath} \begin{utheorem} If the uniformly bounded sequence $\{f_n\}$ of complex Borel functions converges at each point of $\sigma(A)$ to the function $f$, then $f_n(A) \to f(A)$ in the strong operator topology. \end{utheorem} \begin{proof} \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_bornological_spaces}{}\subsubsection*{{Relation to bornological spaces}}\label{relation_to_bornological_spaces} Every [[inductive limit]] of [[Banach spaces]] is a [[bornological vector space]]. (\hyperlink{AlpaySalomon13}{Alpay-Salomon 13, prop. 2.3}) Conversely, every [[bornological vector space]] is an inductive limit of [[normed spaces]], and of [[Banach spaces]] if it is quasi-complete (\hyperlink{SchaeferWolff99}{Schaefer-Wolff 99}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[reflexive Banach space]] \item [[projective Banach space]] \item [[Banach analytic space]] \end{itemize} [[!include analytic geometry ingredients -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Stefan Banach]]. \begin{itemize}% \item Walter Rudin, \emph{Functional analysis} \item Dunford, Nelson; Schwartz, Jacob T.: ``Linear operators. Part I: General theory.'' (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0635.47001&format=complete}{ZMATH entry}), ``Linear operators. Part II: Spectral theory, self adjoint operators in Hilbert space.'' (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0635.47002&format=complete}{ZMATH entry}) \item Z. Semadeni, \emph{Banach spaces of continuous functions}, vol. I, Polish scientific publishers. Warszawa 1971 \item Daniel Alpay, Guy Salomon, \emph{On algebras which are inductive limits of Banach spaces} (\href{http://arxiv.org/abs/1302.3372}{arXiv:1302.3372}) \item H. H. Schaefer with M. P. Wolff, \emph{Topological vector spaces}, Springer 1999 \end{itemize} category: analysis [[!redirects Banach space]] [[!redirects Banach spaces]] [[!redirects Banach vector space]] [[!redirects Banach vector spaces]] [[!redirects Ban]] [[!redirects norm isomorphism]] [[!redirects norm-isomorphic]] [[!redirects norm isomorphic]] \end{document}