\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Baum-Connes conjecture} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{index_theory}{}\paragraph*{{Index theory}}\label{index_theory} [[!include index theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Theorems}{Theorems}\dotfill \pageref*{Theorems} \linebreak \noindent\hyperlink{greenrosenbergjulg_theorem}{Green-Rosenberg-Julg theorem}\dotfill \pageref*{greenrosenbergjulg_theorem} \linebreak \noindent\hyperlink{related_theorems}{Related theorems}\dotfill \pageref*{related_theorems} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{introductions_and_surveys}{Introductions and surveys}\dotfill \pageref*{introductions_and_surveys} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The Baum-Connes conjecture asserts that under suitable technical conditions, the [[operator K-theory]]/[[KK-theory]] of the [[groupoid convolution algebra]] of an [[action groupoid|action]] [[topological groupoid]] $X//G$ is equivalent to the \emph{$G$-[[equivariant cohomology|equivariant]]} [[topological K-theory]]/[[equivariant operator K-theory]]/[[equivariant KK-theory]] of $X$. Moreover, it says that this equivalences is exhibited by the \emph{[[analytic assembly map]]}. (Just the [[injective map|injectivity]] of this map is related to the [[Novikov conjecture]].) The original version of the Baum-Connes conjecture (\hyperlink{BaumConnes00}{Baum-Connes}) stated for a suitable [[topological group]] $G$ that with $X = E G \simeq \ast$ the point incarnated as the $G$-[[universal principal bundle]] with its free $G$-[[action]] the [[analytic assembly map]] (the $G$-equivariant [[index]] map) \begin{displaymath} K_\bullet^G(E G) \stackrel{}{\to} K_\bullet(C(\mathbf{B}G)) \,, \end{displaymath} from the $G$-[[equivariant K-theory]] of $E G$ to the [[operator K-theory]] of the [[group algebra]], hence the [[groupoid convolution algebra]] of the [[delooping]] groupoid $\mathbf{B}G \simeq \ast // G$, is an [[isomorphism]]. This Baum-Connes conjecture is known to be true for \begin{itemize}% \item [[compact topological groups]], \item [[abelian groups]], \item [[Lie groups]] with finitely many [[connected components]]; \item $p$-adic groups, \item adelic groups. \end{itemize} It is not known if the conjecture is true for all [[discrete groups]]. Later the statement was generalized (\hyperlink{Tu99}{Tu 99}) to more general groupoids. In (\hyperlink{Kasparov88}{Kasparov 88}) the refinement of the [[analytic assembly map]] to [[equivariant cohomology|equivariant]] [[KK-theory]] is given, and called the \emph{descent map}. This is of the form (recalled as \hyperlink{Blackadar}{Blackadar, theorem 20.6.2}) \begin{displaymath} KK^G(A,B) \to KK(G \ltimes A, G \ltimes B) \end{displaymath} where on the left we have $G$-[[equivariant KK-theory]] and on the right ordinary [[KK-theory]] of [[crossed product C\emph{-algebras]] (which by the discussion there are models for the [[groupoid convolution algebras]] of $G$-[[action groupoids]]).} This is an [[isomorphism]] at least for $G$ a [[compact topological group]] and restricted to [[operator K-theory]] (hence to the first argument being $\mathbb{C}$) and for $G$ a [[discrete group]] and restricted to [[K-homology]] (hence ot the second argument being $\mathbb{C}$). In this form this is the \textbf{Green-Julg theorem}, see \hyperlink{GreenJulgTheorem}{below}. \hypertarget{Theorems}{}\subsection*{{Theorems}}\label{Theorems} \hypertarget{greenrosenbergjulg_theorem}{}\subsubsection*{{Green-Rosenberg-Julg theorem}}\label{greenrosenbergjulg_theorem} The Green-Rosenberg-Julg theorem identifies [[equivariant K-theory]] with the [[operator K-theory]] of [[crossed product algebras]]. \begin{theorem} \label{GreenJulgTheorem}\hypertarget{GreenJulgTheorem}{} \textbf{(Green-Julg theorem)} Let $G$ be a [[topological group]] acting on a [[C\emph{-algebra]] $A$.} \begin{enumerate}% \item If $G$ is a [[compact topological group]] then the descent map \begin{displaymath} KK^G(\mathbb{C}, A) \to KK(\mathbb{C},G\ltimes A) \end{displaymath} is an [[isomorphism]], identifying the [[equivariant operator K-theory]] of $A$ with the ordinary [[operator K-theory]] of the [[crossed product C\emph{-algebra]] $G \ltimes A$.} \item if $G$ is a [[discrete group]] then the descent map \begin{displaymath} KK^G(A, \mathbb{C}) \to KK(G \ltimes A, \mathbb{C}) \end{displaymath} is an [[isomorphism]], identifying the equivariant [[K-homology]] of $A$ with the ordinary [[K-homology]] of the [[crossed product C\emph{-algebra]] $G \ltimes A$.} \end{enumerate} \end{theorem} This goes back to (\hyperlink{Green82}{Green 82}), (\hyperlink{Julg81}{Julg 81}). A [[KK-theory]]-proof is in (\hyperlink{Echterhoff}{Echterhoff, theorem 0.2}); a textbook account is in (\hyperlink{Blackadar}{Blackadar, 11.7, 20.2.7}). See also around (\hyperlink{Land13}{Land 13, prop. 41}). \hypertarget{related_theorems}{}\subsection*{{Related theorems}}\label{related_theorems} \begin{itemize}% \item [[Atiyah-Segal completion theorem]], [[Green-Julg theorem]] \end{itemize} [[!include Segal completion -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{introductions_and_surveys}{}\subsubsection*{{Introductions and surveys}}\label{introductions_and_surveys} Introductions and surveys include \begin{itemize}% \item [[Alain Valette]], \emph{Introduction to the Baum-Connes conjecture} (\href{http://www.univ-orleans.fr/mapmo/membres/chatterji/Valette.pdf}{pdf}) \item [[Nigel Higson]], \emph{The Baum-Connes conjecture} (\href{http://media.cit.utexas.edu/math-grasp/Higson_supplemental_1.pdf}{pdf}) \item [[Paul Baum]], \emph{The Baum-Connes conjecture, localisation of categories and quantum groups}, 2008 (\href{http://www.mimuw.edu.pl/~pwit/TOK/sem8/files/Baum_bcclcqg.pdf}{pdf}) \end{itemize} Textbook discussion is in sections 11.7 and 20.2.7 of \begin{itemize}% \item [[Bruce Blackadar]], \emph{[[K-Theory for Operator Algebras]]} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Baum%E2%80%93Connes_conjecture}{Baum-Connes conjecture}} \end{itemize} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} The original article is \begin{itemize}% \item [[Paul Baum]], [[Alain Connes]], \emph{K-theory for Lie groups and foliations}, Enseign. Math. 46 (2000), 3--42. \end{itemize} Proof of the conjecture for hyperbolic groups is in \begin{itemize}% \item [[Vincent Lafforgue]], \emph{La conjecture de Baum-Connes \`a{} coefficients pour les groupes hyperboliques}, Journal of Noncommutative Geometry, Volume 6, Issue 1, 2012, pages 1-197 (\href{http://arxiv.org/abs/1201.4653}{arXiv:1201.4653}) \end{itemize} Technical subtleties are discussed in \begin{itemize}% \item [[Nigel Higson]], [[Vincent Lafforgue]], [[Georges Skandalis]], \emph{Counterexamples to the Baum-Connes conhecture} (\href{http://www.personal.psu.edu/ndh2/math/Papers_files/Higson,%20Lafforgue,%20Skandalis%20-%202002%20-%20Counterexamples%20to%20the%20Baum-Connes%20conjecture.pdf}{pdf}) \end{itemize} The generalization to [[Lie groupoids]] is due to \begin{itemize}% \item [[Jean-Louis Tu]], \emph{The Baum-Connes conjecture for groupoids}, 1999 ([[JLTBaumConnesForGroupoids.pdf:file]]) \end{itemize} Proofs for some cases are in \begin{itemize}% \item [[Georges Skandalis]], [[Jean-Louis Tu]], G. Yu, \emph{The coarse Baum-Connes conjecture and groupoids} (\href{http://www.math.univ-metz.fr/~tu/publi/coarse.pdf}{pdf}) \end{itemize} [[KK-theory]] tools and the descent map are introduced in \begin{itemize}% \item [[Gennady Kasparov]], \emph{Equivariant KK-theory and the Novikov conjecture}, Inventiones Mathematicae, vol. 91, p.147, 1988(\href{http://adsabs.harvard.edu/abs/1988InMat..91..147K}{web}) \end{itemize} The ``Green-Julg theorem'' for commutative algebra and finite group is due to [[Michael Atiyah]], for commutative algebra and general group due to \begin{itemize}% \item P. Green, \emph{Equivariant if-theory and crossed product C\emph{- algebras\_, pp. 337-338 in Operator algebras and applications (Kingston, Ont., 1980), vol. 1, edited by R. V. Kadison, Proc. Sympos. Pure Math. 38, Amer. Math. Soc, Providence, 1982.}} \end{itemize} and the general case is due to an unpublished result by Green and [[Jonathan Rosenberg]] and independently due to \begin{itemize}% \item P. Julg, \emph{K-theorie equivariante et produits croises}, C. R. Acad. Sci. Paris Ser. I Math. 292:13 1981, 629-632. \end{itemize} Further discussion is in \begin{itemize}% \item Siegfried Echterhoff, \emph{The Green-Julg theorem} \href{http://wwwmath.uni-muenster.de/u/paravici/Focused-Semester/lecturenotes/green-julg-Echterhoff.pdf}{pdf} \end{itemize} \begin{itemize}% \item Walther Paravicini, \emph{A generalised Green-Julg theorem for proper groupoids and Banach algebras}, (\href{http://arxiv.org/abs/0902.4365}{arXiv:0902.4365}) \item V. Lafforgue, \href{http://www.mmas.univ-metz.fr/~gnc/bibliographie/HarmonicAnalysis/LafforgueICM.pdf}{pdf} \end{itemize} A modification of the Baum-Connes conjecture with coefficient where many counterexamples (to the conjecture with coefficients) are eliminated is in \begin{itemize}% \item [[Paul Baum]], Erik Guentner, Rufus Willett, \emph{Expanders, exact crossed products, and the Baum-Connes conjecture}, \href{http://arxiv.org/abs/1311.2343}{arxiv/1311.2343} \end{itemize} Discussion in terms of [[localization]]/[[homotopy theory]] is in \begin{itemize}% \item [[Ralf Meyer]], [[Ryszard Nest]], \emph{The Baum-Connes conjecture via localisation of categories, Topology 45 (2006), no. 2, 209--259.} \end{itemize} [[!redirects Green-Julg theorem]] \end{document}