\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Beck-Chevalley condition} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{left_and_right_beckchevalley_condition}{Left and right Beck--Chevalley condition}\dotfill \pageref*{left_and_right_beckchevalley_condition} \linebreak \noindent\hyperlink{dual_beckchevalley_condition}{Dual Beck--Chevalley condition}\dotfill \pageref*{dual_beckchevalley_condition} \linebreak \noindent\hyperlink{for_bifibrations}{For bifibrations}\dotfill \pageref*{for_bifibrations} \linebreak \noindent\hyperlink{Local}{``Local'' Beck--Chevalley condition}\dotfill \pageref*{Local} \linebreak \noindent\hyperlink{InTypeTheory}{In logic / type theory}\dotfill \pageref*{InTypeTheory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{various}{Various}\dotfill \pageref*{various} \linebreak \noindent\hyperlink{PullbacksOfOpfibrations}{For categories of presheaves}\dotfill \pageref*{PullbacksOfOpfibrations} \linebreak \noindent\hyperlink{proper_base_change_in_tale_cohomology}{Proper base change in \'e{}tale cohomology}\dotfill \pageref*{proper_base_change_in_tale_cohomology} \linebreak \noindent\hyperlink{grothendieck_six_operations}{Grothendieck six operations}\dotfill \pageref*{grothendieck_six_operations} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Beck--Chevalley condition}, also sometimes called just the \emph{Beck condition} or the \emph{Chevalley condition}, is a ``commutation of [[adjoint functor|adjoint]]s'' property that holds in many ``[[base change|change of base]]'' situations. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Suppose given a [[commutative square]] (up to [[isomorphism]]) of [[functors]]: \begin{displaymath} \itexarray{ & \overset{f^*}{\to} & \\ ^{g^*}\downarrow && \downarrow^{k^*}\\ & \underset{h^*}{\to} & } \end{displaymath} in which $f^*$ and $h^*$ have [[left adjoint]]s $f_!$ and $h_!$, respectively. (The classical example is a [[Wirthmüller context]].) Then the [[natural isomorphism]] that makes the square commute \begin{displaymath} k^* f^* \to h^* g^* \end{displaymath} has a [[mate]] \begin{displaymath} h_! k^* \to g^* f_! \end{displaymath} defined as the composite \begin{displaymath} h_! k^* \overset{\eta}{\to} h_! k^* f^* f_! \overset{\cong}{\to} h_! h^* g^* f_! \overset{\epsilon}{\to} g^* f_! \,. \end{displaymath} We say the original square satisfies the \textbf{Beck--Chevalley condition} if this mate is an [[isomorphism]]. More generally, it is clear that for this to make sense, we only need a transformation $k^* f^* \to h^* g^*$; it doesn't need to be an isomorphism. We also use the term \emph{Beck--Chevalley condition} in this case, \hypertarget{left_and_right_beckchevalley_condition}{}\subsubsection*{{Left and right Beck--Chevalley condition}}\label{left_and_right_beckchevalley_condition} Of course, if $g^*$ and $k^*$ also have [[left adjoints]], there is also a Beck--Chevalley condition stating that the corresponding mate $k_! h^* \to f^* g_!$ is an isomorphism, and this is not equivalent in general. Context is usually sufficient to disambiguate, although some people speak of the ``left'' and ``right'' Beck--Chevalley conditions. Note that if $k^* f^* \to h^* g^*$ is not an isomorphism, then there is only one possible Beck-Chevalley condition. \hypertarget{dual_beckchevalley_condition}{}\subsubsection*{{Dual Beck--Chevalley condition}}\label{dual_beckchevalley_condition} If $f^*$ and $h^*$ have \emph{right} adjoints $f_*$ and $h_*$, there is also a dual Beck--Chevalley condition saying that the mate $g^* f_* \to h_* k^*$ is an isomorphism. By general nonsense, if $f^*$ and $h^*$ have right adjoints and $g^*$ and $k^*$ have left adjoints, then $g^* f_* \to h_* k^*$ is an isomorphism if and only if $k_! h^* \to f^* g_!$ is. \hypertarget{for_bifibrations}{}\subsubsection*{{For bifibrations}}\label{for_bifibrations} Originally, the Beck-Chevalley condition was introduced in (\hyperlink{BenabouRoubaud}{B\'e{}nabou-Roubaud, 1970}) for [[bifibrations]] over a base category with pullbacks. In \emph{loc.cit.} they call this condition \textbf{Chevalley condition} because he introduced it in his 1964 seminar. A [[bifibration]] $\mathbf{X} \to \mathbf{B}$ where $\mathbf{B}$ has pullbacks satisfies the \textbf{Chevalley condition} iff for every commuting square \begin{displaymath} \itexarray{ & \overset{\psi^\prime}{\rightarrow} & \\ \downarrow^{\varphi^\prime} && \downarrow^{\varphi}\\ & \underset{\psi}{\rightarrow} & } \end{displaymath} in $\mathbf{X}$ over a pullback square in the base $\mathbf{B}$ where $\varphi$ is [[cartesian morphism|cartesian]] and $\psi$ is cocartesian it holds that $\varphi^\prime$ is cartesian iff $\psi^\prime$ is cocartesian. Actually, it suffices to postulate one direction because the other one follows. The nice thing about this formulation is that there is no mention of ``canonical'' morphisms and no mention of [[cleavages]]. A fibration $P$ has products satisfying the Chevalley condition iff the opposite fibration $P^{op}$ is a bifibration satisfying the Chevalley condition in the above sense. According to the [[Benabou–Roubaud theorem]], the Chevalley condition is crucial for establishing the connection between the descent in the sense of fibered categories and the [[monadic descent]]. \hypertarget{Local}{}\subsubsection*{{``Local'' Beck--Chevalley condition}}\label{Local} Suppose that $f^*$ and $h^*$ do not have entire left adjoints, but that for a particular object $x$ the left adjoint $f_!(x)$ exists. This means that we have an object ``$f_! x$'' and a morphism $\eta_x\colon x \to f^* f_! x$ which is initial in the [[comma category]] $(x / f^*)$. Then we have $k^*(\eta) \colon k^* x \to k^* f^* f_! x \to h^* g^* f_! x$, and we say that the square satisfies the \emph{local Beck-Chevalley condition at $x$} if $k^*(\eta)$ is initial in the comma category $(k^* x / h^*)$, and hence exhibits $g^* f_! x$ as ``$h_! k^* x$'' (although we have not assumed that the entire functor $h_!$ exists). If the functors $f_!$ and $h_!$ do exist, then the square satisfies the (global) Beck-Chevalley condition as defined above if and only if it satisfies the local one defined here at every object. \hypertarget{InTypeTheory}{}\subsection*{{In logic / type theory}}\label{InTypeTheory} If the functors in the formulation of the Beck-Chevalley condition are [[base change]] functors in the [[categorical semantics]] of some [[dependent type theory]] (or just of a [[hyperdoctrine]]) then the BC condition is equivalently stated in terms of logic as follows. A [[commuting diagram]] \begin{displaymath} \itexarray{ D &\stackrel{h}{\to}& C \\ {}^{\mathllap{k}}\downarrow && \downarrow^{\mathrlap{g}} \\ A &\stackrel{f}{\to}& B } \end{displaymath} is interpreted as a morphism of [[contexts]]. The [[pullback]] (of [[slice categories]] or of fibers in a [[hyperdoctrine]]) $h^*$ and $f^*$ is interpreted as the [[substitution]] of [[variables]] in these contexts. And the [[left adjoint]] $\sum_k \coloneqq k_!$ and $\sum_q \coloneqq g_!$, the [[dependent sum]] is interpreted (up to [[truncated|(-1)-truncation]], possibly) as [[existential quantifier|existential quantification]]. In terms of this the Beck-Chevalley condition says that if the above diagram is a [[pullback]], then \textbf{substitution commutes with existential quantification} \begin{displaymath} \sum_k h^* \phi \stackrel{\simeq}{\to} f^* \sum_g \phi \,. \end{displaymath} \begin{example} \label{}\hypertarget{}{} Consider the diagram of [[contexts]] \begin{displaymath} \itexarray{ [\Gamma, x : X] &\stackrel{}{\to}& [\Gamma, x : X, y : Y] \\ \downarrow && \downarrow \\ \Gamma &\to& [\Gamma, y : Y] } \;\;\; \simeq \;\;\; \itexarray{ \Gamma \times X &\stackrel{(p_1,p_2,t)}{\to}& \Gamma \times X \times Y \\ {}^{\mathllap{p_1}}\downarrow && \downarrow^{\mathrlap{(p_1,p_3)}} \\ \Gamma &\stackrel{(id,t)}{\to} & \Gamma \times Y } \,, \end{displaymath} with the horizontal morphism coming from a [[term]] $t : \Gamma \to Y$ in [[context]] $\Gamma$ and the vertical morphisms being the evident [[projection]], then the condition says that we may in a [[proposition]] $\phi$ substitute $t$ for $y$ before or after quantifying over $x$: \begin{displaymath} \sum_{x : X} \phi(x,t) \simeq (\sum_{x : X} \phi(x,y))[t/y] \,. \end{displaymath} \end{example} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{various}{}\subsubsection*{{Various}}\label{various} \begin{itemize}% \item The [[codomain fibration]] of any [[category]] with [[pullbacks]] is a bifibration, and satisfies the Beck--Chevalley condition at every pullback square. \item If $C$ is a [[regular category]] (such as a [[topos]]), the bifibration $Sub(C) \to C$ of [[subobjects]] satisfies the Beck--Chevalley condition at every pullback square. \item The [[family fibration]] $Fam(C)\to Set$ of any category $C$ with small sums satisfies the Beck--Chevalley condition at every pullback square in $Set$. \item \href{double+coset#MackeyFormula}{Mackey's restriction formula} for group representations. \end{itemize} \hypertarget{PullbacksOfOpfibrations}{}\subsubsection*{{For categories of presheaves}}\label{PullbacksOfOpfibrations} \begin{prop} \label{BCForPresheavesOnPullbacksOfOpfibrations}\hypertarget{BCForPresheavesOnPullbacksOfOpfibrations}{} If $\phi : D \to C$ is an [[opfibration]] of [[small categories]] and \begin{displaymath} \itexarray{ D' &\stackrel{\beta}{\to}& D \\ \downarrow^{\mathrlap{\psi}} && \downarrow^{\mathrlap{\phi}} \\ C' &\stackrel{\alpha}{\to}& C } \end{displaymath} is a [[pullback]] diagram (in the \emph{1-category} [[Cat]]), and for $\mathcal{C}$ a [[category]] with all [[small colimits]], then the induced diagram of [[presheaf categories]] \begin{displaymath} \itexarray{ [D', \mathcal{C}] &\stackrel{\beta^*}{\longleftarrow}& [D, \mathcal{C}] \\ \uparrow^{\mathrlap{\psi}^*} && \uparrow^{\mathrlap{\phi}^*} \\ [C', \mathcal{C}] &\stackrel{\alpha^*}{\longleftarrow}& [C,\mathcal{C}] } \,, \end{displaymath} satisfies the Beck-Chevalley condition: for $\psi_!$ and $\phi_!$ denoting the left [[Kan extension]] along $\psi$ and $\phi$, respectively, then we have a [[natural isomorphism]] \begin{displaymath} \psi_! \beta^* \simeq \alpha^* \phi_! \,. \end{displaymath} \end{prop} (This is maybe sometimes called the \emph{projection formula}. But see at \emph{[[projection formula]]}.) For this statement in the more general context of [[quasicategories]] see (\hyperlink{Joyal}{Joyal, prop. 11.6}). \begin{proof} Since $\phi$ is [[opfibration|opfibered]], for every object $c \in C$ the embedding of the [[fiber]] $\phi^{-1}(c)$ into the [[comma category]] $\phi/c$ is a [[final functor]]. Therefore the pointwise formula for the left [[Kan extension]] $\phi_!$ is equivalently given by taking the colimit over the fiber, instead of the comma category \begin{displaymath} \phi_1(X)_c \simeq \lim_{\underset{\phi^{-1}(c)}{\to}} X \,. \end{displaymath} Therefore we have a sequence of [[isomorphisms]] \begin{displaymath} \begin{aligned} (\psi_! \beta^* X)(c') & \simeq \lim_{\underset{\psi^{-1}(c')}{\to}} (X\circ \beta) \\ & \simeq \lim_{\underset{\phi^{-1}(\alpha(c'))}{\to}} X \\ & \simeq (\alpha^* \phi_! X)(c') \end{aligned} \end{displaymath} all of them [[natural isomorphism|natural]] in $c'$. \end{proof} For an example that prop. \ref{BCForPresheavesOnPullbacksOfOpfibrations} may fail without the condition that $D \to C$ is an opfibration: Consider $C=$ the [[interval category]] $(0\to 1)$, $D=C'=$ the [[terminal category]], $\phi=0$, $\alpha=1$, so that $D'=\emptyset$, but $\alpha^*\phi_!$ is the identity functor. \hypertarget{proper_base_change_in_tale_cohomology}{}\subsubsection*{{Proper base change in \'e{}tale cohomology}}\label{proper_base_change_in_tale_cohomology} For [[coefficients]] of [[torsion group]], [[étale cohomology]] satisfies Beck-Chevalley along [[proper morphisms]]. This is the statement of the \emph{[[proper base change theorem]]}. See there for more details. \hypertarget{grothendieck_six_operations}{}\subsubsection*{{Grothendieck six operations}}\label{grothendieck_six_operations} A kind of Beck-Chevalley condition appears in the axioms of Grothendieck's [[six operations]]. See there for more. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[Benabou-Roubaud theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Jean Bénabou]], [[Jacques Roubaud]], \emph{Monades et descente}, C. R. Acad. Sc. Paris, t. 270 (12 Janvier 1970), Serie A, 96--98, (\href{http://gallica.bnf.fr/ark:/12148/bpt6k480298g/f100}{link}, Biblioth\`e{}que nationale de France) \end{itemize} Discussion for [[subobject lattices]] is in \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], chapter IV.9 (around page 205) of \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} Discussion for presheaf categories in the context of [[quasicategories]] ([[(infinity,1)-categories of (infinity,1)-presheaves]]) is in \begin{itemize}% \item [[André Joyal]], \emph{The Theory of Quasi-Categories and its Applications} (\href{http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf}{pdf}) \end{itemize} [[!redirects Beck-Chevalley conditions]] [[!redirects Beck-Chevalley\_Condition]] [[!redirects Beck-Chevalley Condition]] [[!redirects Beck–Chevalley condition]] [[!redirects Beck--Chevalley condition]] [[!redirects Beck condition]] [[!redirects Chevalley condition]] [[!redirects Beck-Chevalley property]] [[!redirects Beck–Chevalley property]] [[!redirects Beck--Chevalley property]] [[!redirects Beck-Chevalley transformation]] [[!redirects Beck-Chevalley transformations]] \end{document}