\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bekenstein-Hawking entropy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{interpretation_in_adscft_correspondence}{Interpretation in AdS/CFT correspondence}\dotfill \pageref*{interpretation_in_adscft_correspondence} \linebreak \noindent\hyperlink{interpretation_by_strong_coupling_limit_of_dbranes}{Interpretation by strong coupling limit of D-branes}\dotfill \pageref*{interpretation_by_strong_coupling_limit_of_dbranes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{ReferencesGeneral}{General}\dotfill \pageref*{ReferencesGeneral} \linebreak \noindent\hyperlink{via_wickrotated_thermal_field_theory}{Via Wick-rotated thermal field theory}\dotfill \pageref*{via_wickrotated_thermal_field_theory} \linebreak \noindent\hyperlink{interpretation_in_string_theory}{Interpretation in string theory}\dotfill \pageref*{interpretation_in_string_theory} \linebreak \noindent\hyperlink{interpretation_as_entanglement_entropy}{Interpretation as entanglement entropy}\dotfill \pageref*{interpretation_as_entanglement_entropy} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[gravity]], \textbf{Bekenstein-Hawking entropy} is an [[entropy]] assigned to [[black hole]], on the basis of laws of thermodynamics and observers outside black hole. It striking property is that it is proportional to the surface area of the balck hole's [[horizon]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{interpretation_in_adscft_correspondence}{}\subsubsection*{{Interpretation in AdS/CFT correspondence}}\label{interpretation_in_adscft_correspondence} In the context of [[string theory]] BH entropy is explained by a version of the [[AdS/CFT correspondence]]. Here every [[black brane]] solution in [[supergravity]] is the strong-coupling limit of a [[D-brane]] [[worldvolume]] [[QFT]]. After [[Kaluza-Klein mechanism|KK-reduction]] these black brane configurations become ordinary [[black hole]]s. The [[entropy]] of the [[D-brane]] worldvolume theories on the [[event horizon]] turns out to coincide with the BH entropy of the corresponding black hole. Detailed computations exist in particular for [[D1-brane]]/[[D5-brane]] systems. This is parts of the [[AdS/CFT correspondence]]. See (\hyperlink{AGMOO}{AGMOO, chapter 5}). See also \begin{itemize}% \item [[holographic entanglement entropy]] \item \emph{[[string theory results applied elsewhere]]}. \end{itemize} \hypertarget{interpretation_by_strong_coupling_limit_of_dbranes}{}\subsubsection*{{Interpretation by strong coupling limit of D-branes}}\label{interpretation_by_strong_coupling_limit_of_dbranes} Another way to derive Bekenstein-Hawking entropy in [[string theory]] is by computing the entropy of weakly coupled open strings on D-brane configurations in flat [[Minkowski space]] which transmute as the coupling constant is increased to given (supersymmetric) black hole configurations. More on this is at \emph{[[black holes in string theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item gravitational entropy \begin{itemize}% \item [[black hole radiation]] \item \textbf{Bekenstein-Hawking entropy} \item [[generalized second law of thermodynamics]] \item [[black holes in string theory]] \item [[holographic entanglement entropy]] \end{itemize} \item [[thermal quantum field theory]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{ReferencesGeneral}{}\subsubsection*{{General}}\label{ReferencesGeneral} A textbook account is \begin{itemize}% \item [[Valeri Frolov]], Andrei Zelnikov, \emph{Introduction to black hole physics}, Oxford 2011 \end{itemize} Review form the point of view of [[thermal field theory]]: \begin{itemize}% \item S.A. Fulling, S.N.M. Ruijsenaars, \emph{Temperature, periodicity and horizons}, Physics Reports Volume 152, Issue 3, August 1987, Pages 135-176 (\href{https://www1.maths.leeds.ac.uk/~siru/papers/p26.pdf}{pdf}, ) \end{itemize} Basic introductory accounts include \begin{itemize}% \item [[Robert Wald]], \emph{The Thermodynamics of Black Holes} (\href{http://arxiv.org/abs/gr-qc/9912119}{arXiv:gr-qc/9912119}) \item [[Jacob Bekenstein]], \emph{\href{http://www.scholarpedia.org/article/Bekenstein-Hawking_entropy}{Bekenstein-Hawking entropy}}, (2008), Scholarpedia, 3(10):7375 \end{itemize} A more general discussion which identifies thermodynamic properties of all [[horizons]] appearing on gravity (not just [[black hole]] horizons) was given in \begin{itemize}% \item [[Ted Jacobson]], \emph{Thermodynamics of Spacetime: The Einstein Equation of State}, Phys.Rev.Lett.75:1260-1263, 1995 (\href{http://arxiv.org/abs/gr-qc/9504004}{arXiv:gr-qc/9504004}) \end{itemize} This article showed that under some assumptions the [[Einstein equations]] can even be \emph{derived} from identifying gravitational horizon area with [[entropy]] and them imposing laws of [[thermodynamics]]. For more comments and more references on this observation see \begin{itemize}% \item [[Thanu Padmanabhan]], \emph{Thermodynamical Aspects of Gravity: New insights}, Rep. Prog. Phys. 73 (2010) 046901 (\href{http://arxiv.org/abs/0911.5004}{arXiv:0911.5004}) \end{itemize} (Later authors tried to argue that derivations like this show that gravity is not a fundamental force of nature such as [[electromagnetism]] or the [[strong nuclear force]], but rather an [[entropic force]] that arises only from more fundamental forces in a [[thermodynamic limit]]. This however remains at best unclear.) Discussion of black hole entropy from entropy of [[conformal field theory]] associated with the horizon has been given in \begin{itemize}% \item [[Steve Carlip]], \emph{Entropy from Conformal Field Theory at Killing Horizons}, Class.Quant.Grav.16:3327-3348,1999 (\href{http://xxx.lanl.gov/abs/gr-qc/9906126}{arXiv:gr-qc/9906126}) \item [[Steve Carlip]], \emph{Horizon Constraints and Black Hole Entropy}, Class.Quant.Grav.22:1303-1312, 2005 (\href{http://arxiv.org/abs/hep-th/0408123}{arXiv:hep-th/0408123}) \end{itemize} and reviewed in \begin{itemize}% \item [[Steve Carlip]], \emph{Horizon constraints and black hole entropy} (\href{http://arxiv.org/abs/gr-qc/0508071}{arXiv:gr-qc/0508071}) \item [[Steve Carlip]], \emph{Symmetries, Horizons, and Black Hole Entropy}, Gen.Rel.Grav.39:1519-1523,2007; Int.J.Mod.Phys.D17:659-664,2008 (\href{http://arxiv.org/abs/0705.3024}{arXiv:0705.3024}) \end{itemize} Further developments on black hole entropy are in \begin{itemize}% \item [[Ashoke Sen]], \emph{Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions}, JHEP04(2013)156 (\href{http://arxiv.org/abs/arXiv:1205.0971}{arXiv:arXiv:1205.0971}) \item Aitor Lewkowycz, [[Juan Maldacena]], \emph{Generalized gravitational entropy} (\href{http://arxiv.org/abs/1304.4926}{arXiv:1304.4926}) \end{itemize} A related controversial article that spawned a lot of discussion is \begin{itemize}% \item [[Ahmed Almheiri]], [[Donald Marolf]], [[Joseph Polchinski]], James Sully, \emph{Black holes: complementarity or firewalls?}, (\href{http://arxiv.org/abs/arXiv:1207.3123}{arXiv:1207.3123}) \end{itemize} \hypertarget{via_wickrotated_thermal_field_theory}{}\subsubsection*{{Via Wick-rotated thermal field theory}}\label{via_wickrotated_thermal_field_theory} Discussion via [[Wick rotation]] to [[Euclidean field theory]] on spacetimes with compact/periodic Euclidean time ([[thermal field theory]] on [[curved spacetimes]]) is in \begin{itemize}% \item S.A. Fulling, S.N.M. Ruijsenaars, \emph{Temperature, periodicity and horizons}, Physics Reports Volume 152, Issue 3, August 1987, Pages 135-176 (\href{https://www1.maths.leeds.ac.uk/~siru/papers/p26.pdf}{pdf}, ) \item [[Gary Gibbons]], Malcolm J. Perry, \emph{Black Holes and Thermal Green Functions}, Vol. 358, No. 1695 (1978) (\href{https://www.jstor.org/stable/79482}{jstor:79482}) \end{itemize} \hypertarget{interpretation_in_string_theory}{}\subsubsection*{{Interpretation in string theory}}\label{interpretation_in_string_theory} Rieview of interpretation of [[black holes in string theory]] includes \begin{itemize}% \item [[Ofer Aharony]], S. S. Gubser, [[Juan Maldacena]], [[Hirosi Ooguri]], Y. Oz, Chapter 5 of \emph{Large N field theories, string theory and gravity}, \href{http://arxiv.org/abs/hep-th/9905111}{arXiv:hep-th/9905111} \item [[Dieter Lüst]], Ward Vleeshouwers, sections 21-22 of \emph{Black Hole Information and Thermodynamics} (\href{https://arxiv.org/abs/1809.01403}{arXiv:1809.01403}) \item Sebastian De Haro, Jeroen van Dongen, Manus Visser, [[Jeremy Butterfield]], \emph{Conceptual Analysis of Black Hole Entropy in String Theory} (\href{https://arxiv.org/abs/1904.03232}{arXiv:1904.03232}) \item Jeroen van Dongen, Sebastian De Haro, Manus Visser, [[Jeremy Butterfield]], \emph{Emergence and Correspondence for String Theory Black Holes} (\href{https://arxiv.org/abs/1904.03234}{arXiv:1904.03234}) \end{itemize} Discussion in view of [[higher curvature corrections]] includes \begin{itemize}% \item [[Thomas Mohaupt]], \emph{Strings, higher curvature corrections, and black holes} (\href{http://arxiv.org/abs/hep-th/0512048}{arXiv:hep-th/0512048}) \end{itemize} See also \begin{itemize}% \item MO question, \href{http://mathoverflow.net/questions/31789/statistical-physics-of-string-theory}{statistical-physics-of-string-theory} \end{itemize} \hypertarget{interpretation_as_entanglement_entropy}{}\subsubsection*{{Interpretation as entanglement entropy}}\label{interpretation_as_entanglement_entropy} Discussions of the interpreation of BH entropy as [[holographic entanglement entropy]] include \begin{itemize}% \item Alejandro Satz, [[Ted Jacobson]], \emph{Black hole entropy and the renormalization group} (\href{http://arxiv.org/abs/1301.3171}{arXiv:1301.3171}) \end{itemize} Computation of [[black hole entropy]] in 4d via [[AdS4-CFT3 duality]] from [[holographic entanglement entropy]] in the [[ABJM theory]] for the [[M2-brane]] is discussed in \begin{itemize}% \item Jun Nian, Xinyu Zhang, \emph{Entanglement Entropy of ABJM Theory and Entropy of Topological Black Hole} (\href{https://arxiv.org/abs/1705.01896}{arXiv:1705.01896}) \end{itemize} [[!redirects black hole entropy]] [[!redirects BH entropy]] [[!redirects black hole thermodynamics]] \end{document}