\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Berkovich space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analytic_geometry}{}\paragraph*{{Analytic geometry}}\label{analytic_geometry} [[!include analytic geometry -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_of_berkovich_analytic_spaces}{Definition of Berkovich analytic spaces}\dotfill \pageref*{definition_of_berkovich_analytic_spaces} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Cohomology}{Cohomology}\dotfill \pageref*{Cohomology} \linebreak \noindent\hyperlink{LocalContractibility}{Local contractibility}\dotfill \pageref*{LocalContractibility} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{introductions_and_reviews}{Introductions and reviews}\dotfill \pageref*{introductions_and_reviews} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \noindent\hyperlink{relation_to_other_topics}{Relation to other topics}\dotfill \pageref*{relation_to_other_topics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Berkovich analytic spaces} are a version of [[analytic space]]s over [[nonarchimedean fields]]. Unlike the \emph{rigid analytic spaces} (see [[rigid analytic geometry]]) of Tate, which are locally defined via [[maximal spectra]] of Tate algebras glued via the [[Grothendieck topology|Grothendieck]] [[G-topology]], the Berkovich analytic spaces are actual [[topological space]] equipped with a cover by [[affinoid domains]] via the [[analytic spectrum]] construction, due to [[Vladimir Berkovich]]. This spectrum can be viewed as consisting of the data of prime ideal plus the extension of the norm to the residue field; thus the Berkovich spectrum has far more points (though fewer than, say, [[Huber's adic spaces]] which may also contain valuations of higher order). For more background see \emph{[[analytic geometry]]}. \hypertarget{definition_of_berkovich_analytic_spaces}{}\subsection*{{Definition of Berkovich analytic spaces}}\label{definition_of_berkovich_analytic_spaces} Let $k$ be a [[non-archimedean field]]. \begin{defn} \label{}\hypertarget{}{} Given $n \in \mathbb{N}$ and positive elements $\{r_1, \cdots, r_n \in k\}$, consider the sub-[[power series]] [[associative algebra|algebra]] over $k$ of those series which [[convergence|converge]] inside the radii $k_i$, i.e. the algebra defined by \begin{displaymath} \{\frac{1}{r_1} T_1 , \cdots, \frac{1}{r_n}T_n\} := \left\{ \sum_\nu a_\nu T^\nu | \lim_{{\vert \nu\vert} \to \infty} {\vert a_\nu \vert} r^\nu = 0 \right\} \,. \end{displaymath} This is a commutative [[Banach algebra]] over $k$ with [[norm]] ${\Vert f \Vert} = max {\vert a_\nu\vert} r^\nu$. A \textbf{$k$-[[affinoid algebra]]} is a commutative Banach $k$-algebra $A$ for which there exists $n$ and $\{r_i\}$ as above and an [[epimorphism]] \begin{displaymath} \{\frac{1}{r_1} T_1 , \cdots, \frac{1}{r_n}T_n\} \to A \end{displaymath} such that the [[norm]] on $A$ is the [[quotient norm]]. If one can choose here $r_i = 1$ for all $i$ then $A$ is called \textbf{strictly $k$-affinoid}. The [[category]] of \textbf{$k$-[[affinoid spaces]]} is the [[opposite category]] of the category of $k$-[[affinoid algebras]] and bounded [[homomorphisms]] between them. \end{defn} Via the [[analytic spectrum]] $Spec_{an}$ there is a [[topological space]] associated with any $k$-affinoid space. Often this underlying topological space is referred to as \emph{the analytic space}. \begin{defn} \label{}\hypertarget{}{} An \textbf{[[affinoid domain]]} in an [[affinoid space]] $X = Spec_{an} A$ is a [[closed subset]] $V \subset X$ such that there is a [[homomorphism]] of $k$-affinoid spaces \begin{displaymath} \phi : Spec_{an} A_V \to X \end{displaymath} for some $A_V$, whose [[image]] is $V$, and such that every other morphism of $k$-affinoid spaces into $X$ whose image is contained in $V$ uniquely factors through this morphism. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{$k$-analytic space} is a [[locally Hausdorff topological space|locally Hausforf]] [[topological space]] $X$ equipped with an [[atlas]] by $k$-[[affinoid domains]] and [[affinoid domain embeddings]], such that their underlying [[analytic spectra]] [[topological spaces]] form a [[quasinet|net]] of [[compact subsets]] on $X$. \end{defn} (\hyperlink{Berkovich09}{Berkovich 09, def. 3.1.4}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Cohomology}{}\subsubsection*{{Cohomology}}\label{Cohomology} Under some mild conditions, the algebraic and the analytic [[étale cohomology]] of Berkovich spaces agree. (\hyperlink{Berkovich95}{Berkovich 95}) The underlying [[topological space]] $X^{an}$ given by the [[Berkovich analytic spectrum]] has as [[singular cohomology]] the [[weight filtration|weight 0]]-cohomology of $X$ (\hyperlink{Berkovich09}{Berkovich 09}). See also MO discussion \href{http://mathoverflow.net/a/171653/381}{here}. \hypertarget{LocalContractibility}{}\subsubsection*{{Local contractibility}}\label{LocalContractibility} A [[complex analytic manifold]] and a \emph{smooth} [[complex analytic space]] is locally isomorphic to a [[polydisk]] and hence is trivially a [[locally contractible space]]. But over a [[non-archimedean field]] analytic spaces no longer need to be locally isomorphic to polydisks (but $p$-adic polydisks are still contractible (\hyperlink{Berkovich90}{Berkovich 90})). The following result establishes, under mild conditions, that general analytic spaces are nevertheless locally contractible. Assume that the [[valuation]] on the ground field $k$ is nontrivial. \begin{defn} \label{LocallyEmbeddableInASmoothSpace}\hypertarget{LocallyEmbeddableInASmoothSpace}{} A $k$-analytic space $X$ is called \emph{locally embeddable in a smooth space} if each point of $X$ has an [[open neighbourhood]] [[isomorphism|isomorphic]] to a strictly $k$-analytic domain in smooth $k$-analytic space. \end{defn} \begin{theorem} \label{}\hypertarget{}{} Every $k$-analytic space which is locally embeddable in a smooth space, def. \ref{LocallyEmbeddableInASmoothSpace}, is a [[locally contractible space]]. More precisely, every point of a locally smooth $k$-analytic space has an open neighbourhood $U$ which is contractible, and which is a [[union]] $U = \cup_{i = 1}^\infty U_i$ of analytic domains. \end{theorem} The local contractibility is \hyperlink{BerkovichContractible}{Berkovich (1999), theorem 9.1}. The refined statment in terms of inductive systems of analytic domains is in \hyperlink{BerkovichContractibleII}{Berkovich (2004)}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[analytic affine line]] \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item The proof of the [[local Langlands conjecture]] for $GL_n$ by Harris--Taylor uses [[étale cohomology]] on non-archimedean analytic spaces (in the sense of Berkovich) to construct the required Galois representations over local fields. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[non-commutative analytic space]] \item [[p-adic geometry]] \item [[G-topology]] \item [[Huber space]], [[perfectoid space]] \item [[global analytic geometry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{introductions_and_reviews}{}\subsubsection*{{Introductions and reviews}}\label{introductions_and_reviews} A nice survey is in \begin{itemize}% \item [[Bernard Le Stum]], \emph{One century of $p$-adic geometry -- From Hensel to Berkovich and beyond}, talk notes, June 2012 (\href{http://www-irma.u-strasbg.fr/IMG/pdf/NotesCoursLeStum.pdf}{pdf}) \end{itemize} A good introduction to the general idea is at the beginning of \begin{itemize}% \item [[Sam Payne]], \emph{Topology of nonarchimedean analytic spaces and relations to complex algebraic geometry} (\href{http://arxiv.org/abs/1309.4403}{arXiv:1309.4403}) \end{itemize} Basic notions are listed in \begin{itemize}% \item M. Temkin, \emph{Non-archimedean analytic spaces} (\href{http://www.math.huji.ac.il/~temkin/lectures/Non-Archimedean_Analytic_Spaces.pdf}{pdf slides}) \end{itemize} A review of basic definitions and facts about affinoid and rigid $k$-analytic spaces can be found in \begin{itemize}% \item Ga\"e{}tan Chenevier, \emph{lecture 5} (\href{http://www.math.polytechnique.fr/~chenevier/coursIHP/chenevier_lecture5.pdf}{pdf}) \end{itemize} See also the references at [[rigid analytic geometry]]. A review of definitions and results on $k$-analytic spaces is in \begin{itemize}% \item [[Vladimir Berkovich]], \emph{$p$-Adic analytic spaces}, in Proceedings of the International Congress of Mathematicians, Berlin, August 1998, Doc. Math. J. DMV, Extra Volume ICM II (1998), 141-151 (\href{http://www.wisdom.weizmann.ac.il/~vova/ICM98_1998.pdf}{pdf}) \end{itemize} A more detailed set of lecture notes along these lines is \begin{itemize}% \item [[Vladimir Berkovich]], \emph{Non-archimedean analytic spaces}, lectures at the \emph{Advanced School on $p$-adic Analysis and Applications}, ICTP, Trieste, 31 August - 11 September 2009 (\href{http://www.wisdom.weizmann.ac.il/~vova/Trieste_2009.pdf}{pdf}) \end{itemize} Introductory exposition of the Berkovich [[analytic spectrum]] is \begin{itemize}% \item [[Jérôme Poineau]], \emph{Global analytic geometry}, pages 20-23 in EMS newsletter September 2007 (\href{http://www.ems-ph.org/journals/newsletter/pdf/2007-09-65.pdf}{pdf}) \item [[Frédéric Paugam]], section 2.1.4 of\_Global analytic geometry and the functional equation\_ (2010) (\href{http://www.math.jussieu.fr/~fpaugam/documents/enseignement/master-global-analytic-geometry.pdf}{pdf}) \end{itemize} A exposition of examples of Berkovich spectra is in \begin{itemize}% \item [[Scott Carnahan]], \emph{Berkovich spaces I} (\href{http://sbseminar.wordpress.com/2007/09/18/berkovich-spaces-i/}{web}) \end{itemize} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} \begin{itemize}% \item [[Vladimir Berkovich]], \emph{Spectral theory and analytic geometry over non-Archimedean fields}, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, (1990) 169 pp. \item [[Vladimir Berkovich]], \emph{\'E{}tale cohomology for non-Archimedean analytic spaces}, Publ. Math. IHES 78 (1993), 5-161. \end{itemize} Discussion of Berkovich09cohomology of Berkovich analytic spaces includes \begin{itemize}% \item [[Vladimir Berkovich]], \emph{On the comparison theorem for \'e{}tale cohomology of non-Archimedean analytic spaces.} Israel Journal of Mathematics 92.1-3 (1995): 45-59. \item [[Vladimir Berkovich]], \emph{A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures}, Algebra, Arithmetic, and Geometry. Birkh\"a{}user Boston, 2009. 49-67. \end{itemize} Discussion of local contractibility of smooth $k$-analytic spaces is in \begin{itemize}% \item [[Vladimir Berkovich]], \emph{Smooth $p$-adic analytic spaces are locally contractible}, Invent. Math. 137 1-84 (1999) (\href{http://www.wisdom.weizmann.ac.il/~vova/Inven_1999_137_contra.pdf}{pdf}) \item [[Vladimir Berkovich]], \emph{Smooth p-adic analytic spaces are locally contractible. II}, in Geometric Aspects of Dwork Theory, Walter de Gruyter \& Co., Berlin, (2004), 293-370. (\href{http://www.wisdom.weizmann.ac.il/~vova/Dworkvol_2004_contraII.pdf}{pdf}) \end{itemize} and more generally in \begin{itemize}% \item [[Ehud Hrushovski]], [[François Loeser]], \emph{Non-archimedean tame topology and stably dominated types} (\href{http://arxiv.org/abs/1009.0252}{arXiv:1009.0252}) \item [[Ehud Hrushovski]], [[François Loeser]], [[Bjorn Poonen]], \emph{Berkovich spaces embed in Euclidean spaces} (\href{http://arxiv.org/abs/1210.6485}{arXiv:1210.6485}) \end{itemize} \hypertarget{relation_to_other_topics}{}\subsubsection*{{Relation to other topics}}\label{relation_to_other_topics} On the relation to [[buildings]]: \begin{itemize}% \item Annette Werner, \emph{Buildings and Berkovich Spaces} (\href{http://www.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/werner/talks/dmvmuench10.pdf}{pdf}) \end{itemize} Relation to [[integration]] theory \begin{itemize}% \item [[Vladimir Berkovich]], \emph{Integration of 1-forms on $p$-adic analytic spaces}, Princeton University Press, \end{itemize} Aspects of the [[homotopy theory]]/[[étale homotopy]] of analytic spaces are discussed in \begin{itemize}% \item [[Aise Johan de Jong]], \emph{\'E{}tale fundamental groups of non-archimedean analytic spaces}, Mathematica, 97 no. 1-2 (1995), p. 89-118 (\href{http://www.numdam.org/item?id=CM_1995__97_1-2_89_0}{numdam}) \end{itemize} Relation to [[formal schemes]]: \begin{itemize}% \item J\'e{}r\^o{}me Poineau, \href{http://mathoverflow.net/a/138577/381}{MO comment} \end{itemize} Discussion of Berkovich analytic geometry as [[algebraic geometry]] in the general sense of [[Bertrand Toën]] and [[Gabriele Vezzosi]] is in \begin{itemize}% \item [[Oren Ben-Bassat]], [[Kobi Kremnizer]], \emph{Non-Archimedean analytic geometry as relative algebraic geometry} (\href{http://arxiv.org/abs/1312.0338}{arXiv:1312.0338}) \end{itemize} [[!redirects Berkovich analytic space]] [[!redirects Berkovich analytic spaces]] [[!redirects Berkovich spaces]] [[!redirects p-adic analytic space]] [[!redirects p-adic analytic spaces]] \end{document}