\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Boardman homomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{from_stable_cohomotopy_to_ordinary_cohomology}{From stable cohomotopy to ordinary cohomology}\dotfill \pageref*{from_stable_cohomotopy_to_ordinary_cohomology} \linebreak \noindent\hyperlink{ForComplexOrientedCohomologyTheories}{For complex oriented cohomology theories}\dotfill \pageref*{ForComplexOrientedCohomologyTheories} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given any [[homotopy commutative ring spectrum]] $(E, \mu, e)$, then the \emph{Boardman homomorphism} is the [[homomorphism]] from [[stable homotopy groups]] (hence from [[stable homotopy homology theory]]) to $E$-[[generalized homology]] groups that is induced by [[smash product]] with the unit map $e \colon \mathbb{S} \longrightarrow E$ from the [[sphere spectrum]]: \begin{displaymath} \pi_\bullet(-) \simeq \pi_\bullet(\mathbb{S} \wedge (-)) \longrightarrow \pi_\bullet(E \wedge (-)) = E_\bullet(-) \,. \end{displaymath} For $E = H \mathbb{Z}$ the [[Eilenberg-MacLane spectrum]] for [[ordinary homology]], then this reduces to the [[Hurewicz homomorphism]] $\pi_\bullet(-) \to H_\bullet(-)$. Dually, there is the Boardman homomorphism from [[stable cohomotopy]] to [[generalized cohomology]] induced under forming [[mapping spectra]] into the unit map of $E$: \begin{displaymath} \pi^\bullet(-) \simeq \pi_\bullet([(-),\mathbb{S}]) \longrightarrow \pi_\bullet([(-),E]) = E^\bullet(-) \,. \end{displaymath} Unifying these two cases, there is the bivariant Boardman homomorphism \begin{displaymath} [X, Y]_\bullet \simeq [X, Y \wedge \mathbb{S}]_\bullet \longrightarrow [X,Y \wedge E]_\bullet \,. \end{displaymath} Since [[generalized homology]]/[[generalized cohomology]] is typically more tractable than [[homotopy groups]]/[[cohomotopy]] (in particular when [[homology spectra split]]), the Boardman homomorphism is often used to partially reduce computations of the latter in terms of computations of the former. One example is the computation of the homotopy grous of [[MU]] via the [[homology of MU]] ([[Quillen's theorem on MU]]), see \hyperlink{ForComplexOrientedCohomologyTheories}{below}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{from_stable_cohomotopy_to_ordinary_cohomology}{}\subsubsection*{{From stable cohomotopy to ordinary cohomology}}\label{from_stable_cohomotopy_to_ordinary_cohomology} Consider the [[unit]] morphism \begin{displaymath} \mathbb{S} \longrightarrow H \mathbb{Z} \end{displaymath} from the [[sphere spectrum]] to the [[Eilenberg-MacLane spectrum]] of the [[integers]]. For any [[topological space]]/[[spectrum]] postcomposition with this morphism induces [[Boardman homomorphisms]] of [[cohomology groups]] (in fact of [[commutative rings]]) \begin{equation} b^n \;\colon\; \pi^n(X) \longrightarrow H^n(X, \mathbb{Z}) \label{BoardmandCohomotopyToOrdinaryCohomology}\end{equation} from the [[stable cohomotopy]] of $X$ in degree $n$ to its [[ordinary cohomology]] in degree $n$. \begin{prop} \label{BoundsOnCoKernelOfBoardmandFromStableCohomotopyToOrdinaryCohomology}\hypertarget{BoundsOnCoKernelOfBoardmandFromStableCohomotopyToOrdinaryCohomology}{} \textbf{(bounds on ([[cokernel|co-]])[[kernel]] of [[Boardman homomorphism]] from [[stable cohomotopy]] to [[integral cohomology]])} If $X$ is a [[CW-spectrum]] which \begin{enumerate}% \item is [[n-connected object of an (infinity,1)-topos|(m-1)-connected]] \item of dimension $d \in \mathbb{N}$ \end{enumerate} then \begin{enumerate}% \item the [[kernel]] of the [[Boardman homomorphism]] $b^n$ \eqref{BoardmandCohomotopyToOrdinaryCohomology} for \begin{displaymath} m \leq n\leq d -1 \end{displaymath} is a $\overline{\rho}_{d-n}$-[[torsion subgroup|torsion group]]: \begin{displaymath} \overline{\rho}_{d-n} ker(b^n) \;\simeq\; 0 \end{displaymath} \item the [[cokernel]] of the [[Boardman homomorphism]] $b^n$ \eqref{BoardmandCohomotopyToOrdinaryCohomology} for \begin{displaymath} m \leq n \leq d - 2 \end{displaymath} is a $\overline{\rho}_{d-n-1}$-[[torsion subgroup|torsion group]]: \begin{equation} \overline{\rho}_{d-n-1} coker(b^n) \;\simeq\; 0 \label{TorsionEstimateCokernel}\end{equation} \end{enumerate} where \begin{displaymath} \overline{\rho}_{i} \;\coloneqq\; \left\{ \itexarray{ 1 &\vert& i\leq 1 \\ \underoverset{j = 1}{i}{\prod} exp\left( \pi_j\left( \mathbb{S}\right) \right) &\vert& \text{otherwise} } \right. \end{displaymath} is the [[multiplication|product]] of the [[exponent of a group|exponents]] of the [[stable homotopy groups of spheres]] in [[positive number|positive]] degree $\leq i$. \end{prop} (\hyperlink{Arlettaz04}{Arlettaz 04, theorem 1.2}) \begin{example} \label{ExampleForEstimatesOfTorsionOfCokernelOfBeta}\hypertarget{ExampleForEstimatesOfTorsionOfCokernelOfBeta}{} \textbf{(estimates for torsion of cokernel of Boardman homomorphism)} Let $X$ be a [[manifold]] \begin{itemize}% \item of [[dimension]] $d = 6$ \item [[simply connected topological space|simply connected]] with $\pi_2(X) \neq 0$ \end{itemize} then Prop. \ref{BoundsOnCoKernelOfBoardmandFromStableCohomotopyToOrdinaryCohomology} asserts that the [[cokernel]] of the [[Boardman homomorphism]] \begin{displaymath} \beta^4 \;\colon\; \mathbb{S}^4(X) \longrightarrow H^4( X, \mathbb{Z} ) \end{displaymath} in \begin{itemize}% \item degree $n = 4$ \end{itemize} is [[torsion subgroup|2-torsion]]: \begin{displaymath} 2 coker(\beta^4) \;=\; 0 \,. \end{displaymath} This is because in this case \eqref{TorsionEstimateCokernel} gives that the relevant torsion degree is \begin{displaymath} \begin{aligned} \overline{\rho}_{d-n-1} & = \overline{\rho}_{1} \\ & = \exp( \pi_1(\mathbb{S}) ) \\ & = \exp( \mathbb{Z}/2 ) \\ & = 2 \end{aligned} \,. \end{displaymath} Similarly, if instead the manifold has dimension $d = 7$ but sticking to degree $n = 4$, then the estimate is that the cokernel is [[torsion subgroup|4-torsion]], \begin{displaymath} 4 coker(\beta^4) \;=\; 0 \,. \end{displaymath} since then \begin{displaymath} \begin{aligned} \overline{\rho}_{d-n-1} & = \overline{\rho}_{2} \\ & = \exp( \pi_1(\mathbb{S}) ) \cdot \exp( \pi_2(\mathbb{S}) ) \\ & = \exp( \mathbb{Z}/2 ) \cdot \exp( \mathbb{Z}/2 ) \\ & = 2 \cdot 2 \\ & = 4 \end{aligned} \,. \end{displaymath} Next for $d = 8$ we \begin{displaymath} \begin{aligned} \overline{\rho}_{d-n-1} & = \overline{\rho}_{3} \\ & = \exp( \pi_1(\mathbb{S}) ) \cdot \exp( \pi_2(\mathbb{S}) ) \cdot \exp( \pi_3(\mathbb{S}) ) \\ & = \exp( \mathbb{Z}/2 ) \cdot \exp( \mathbb{Z}/2 ) \cdot \exp( \mathbb{Z}/{24} ) \\ & = 2 \cdot 2 \cdot 6 \\ & = 24 \end{aligned} \,. \end{displaymath} \end{example} \hypertarget{ForComplexOrientedCohomologyTheories}{}\subsubsection*{{For complex oriented cohomology theories}}\label{ForComplexOrientedCohomologyTheories} Used for [[complex oriented cohomology theories]] and proof of [[Quillen's theorem on MU]] via the [[homology of MU]] (\ldots{}) (\hyperlink{Adams74}{Adams 74, pages 60-62}, \hyperlink{Lurie10}{Lurie 10, lecture 7}) \hypertarget{examples_2}{}\subsection*{{Examples}}\label{examples_2} \begin{prop} \label{BoardmanIsoOn7SphereMod2I}\hypertarget{BoardmanIsoOn7SphereMod2I}{} \textbf{([[Boardman homomorphism|Boardman]] [[isomorphism]] on [[2-sphere]] mod [[binary icosahedral group]])} Consider the [[binary icosahedral group]] $2 I$ and its [[action]] on the [[7-sphere]] induced via the identification $S^7 \simeq S(\mathbb{H} \times \mathbb{H})$ from the [[diagonal action|diagonal]] of the canonical action of $2I$ on the [[quaternions]] $\mathbb{H}$ induced via it being a [[finite subgroup of SU(2)]]. On the [[quotient space]] $S^7/2 I$ the [[Boardman homomorphism]] in degree 4 is an [[isomorphism]] \begin{displaymath} \mathbb{S}^4\left( S^7/2I \right) \underoverset{\simeq}{\beta}{\longrightarrow} H^4\left( S^7/2I , \mathbb{Z} \right) \end{displaymath} from [[stable cohomotopy]] in degree 4 to [[integral cohomology]] in degree 4. \end{prop} \begin{proof} In terms of the [[Atiyah-Hirzebruch spectral sequence]] for [[stable cohomotopy]] it is sufficient to see that the two differentials \begin{displaymath} H^4\left( S^7/2I, \pi^0_s = \pi^s_0 =\mathbb{Z} \right) \overset{d_3}{\longrightarrow} H^6\left( S^7/2I, \pi^{-1}_s = \pi^s_{1} =\mathbb{Z}/2 \right) \end{displaymath} and \begin{displaymath} H^4\left( S^7/2I, \pi^0_s = \pi^s_0 =\mathbb{Z} \right) \overset{d_3}{\longrightarrow} H^7\left( S^7/2I, \pi^{-2}_s = \pi^s_{2} =\mathbb{Z}/2 \right) \end{displaymath} both vanish (all higher differentials on $H^4(-,\pi^0_s)$ vanish simply for dimensional reasons as $S^7$ is of [[dimension]] 7, while there are no differentials into $H^4(-,\pi^0_s)$ simply because the [[sphere spectrum]] is [[connective spectrum|connective]], so that the [[stable homotopy groups of spheres]] vanish in [[negative number|negative]] degree). For $d_2$ to vanish, it is sufficient that \begin{displaymath} H^6\left( S^7/2I, \pi^{-1}_s = \pi^s_{1} =\mathbb{Z}/2 \right) \;\simeq\; 0 \end{displaymath} We now first show that this is the case: First, by the [[Gysin sequence]] for the [[spherical fibration]] \begin{displaymath} \itexarray{ S^7 &\longrightarrow& S^7/SI \\ && \downarrow \\ && B (2 I) } \end{displaymath} we have \begin{displaymath} H^6\left( S^7/2I, \, \mathbb{Z}/2 \right) \;\simeq\; H^6\left( B(2I),\, \mathbb{Z}/2 \right) \,, \end{displaymath} where $B (2 I) \simeq \ast \sslash (2I)$ is the [[classifying space]] of $2I$ (see e.g. at [[infinity-action]]). Moreover, by the [[universal coefficient theorem]] (\href{universal+coefficient+theorem#OrdinaryStatementInTopology}{this Prop.}) we have a [[short exact sequence]] \begin{displaymath} 0 \to Ext^1(H_{5}\big(B(2I), \mathbb{Z}), \mathbb{Z}/2\big) \longrightarrow H^6\big(B(2I), \mathbb{Z}/2\big) \longrightarrow Hom_{Ab}\big( H_6( B(2I), \mathbb{Z}) , \mathbb{Z}/2 \big) \to 0 \,. \end{displaymath} This means that it is sufficient to see that \begin{displaymath} H_{5}\big(B(2I), \mathbb{Z}) \simeq 0 \phantom{AAA} H_{6}\big(B(2I), \mathbb{Z}) \simeq 0 \end{displaymath} But for every [[finite subgroup of SU(2)]] $G_{ADE} \subset SU(2)$ we have (by \href{https://ncatlab.org/nlab/show/finite+rotation+group#GroupCohomologyOfFiniteSubgroupsOfSU2}{this Prop.}) \begin{displaymath} H_{5}\big(B(2I), \mathbb{Z}) \simeq G^{ab}_{ADE} \phantom{AAA} H_{6}\big(B(2I), \mathbb{Z}) \simeq 0 \end{displaymath} where $G^{ab}_{ADE}$ is the [[abelianization]] of $G_{ADE}$. Specifically for $G_{ADE} = 2I$ this does vanish: the [[binary icosahedral group]] is a [[perfect group]] (\href{icosahedral+group#2IIsPerfect}{this Prop.}). This shows that $d_2$ vanishes on $H^4(-, \pi^0)$. Now by a standard argument, the AHSS-differentials between ordinary cohomology groups are stable [[cohomology operations]], and thus, if non-trivial, must be the [[Steenrod operations]] $Sq^n$ (e.g. \href{https://mathgroove.wordpress.com/2016/11/30/filling-the-details-5-two-words-about-the-atiyah-hirzebruch-spectral-sequence/}{here}, but let's add a more canonical reference). This means first of all that if $d_2$ is not trivial then $d_2 = Sq^2$. But since that vanishes on $H^4(-,\pi^0)$ by the above argument, and on $H^7(-,\pi^2)$ for dimension reasons, so that the relevant entries pass as ordinary cohomology groups to the third page of the [[spectral sequence]], it follows similarly that $d_3 = Sq^3$. But by the [[Adem relation]] $Sq^3 = Sq^1 \circ Sq^2$, the vanishing of $Sq_2$ on $H^4(-,\pi^0)$ then also implies the vanishing of $d_3$ on this entry. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hopf degree theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Michael Boardman]]. \begin{itemize}% \item [[John Frank Adams]], part II, section 6 of \emph{[[Stable homotopy and generalised homology]]} (1974) \item [[Stanley Kochmann]], section 4.3 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item Dominique Arlettaz, \emph{The generalized Boardman homomorphisms}, Central European Journal of Mathematics March 2004, Volume 2, Issue 1, pp 50-56 \item [[Jacob Lurie]], lecture 7 of \emph{[[Chromatic Homotopy Theory]]}, 2010, (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture7.pdf}{pdf}) \item [[Akhil Mathew]], \emph{Torsion exponents in stable homotopy and the Hurewicz homomorphism}, Algebr. Geom. Topol. 16 (2016) 1025-1041 (\href{https://arxiv.org/abs/1501.07561}{arXiv:1501.07561}) \end{itemize} [[!redirects Boardman homomorphisms]] \end{document}