\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Boardman-Vogt resolution} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{context_2}{}\section*{{Context}}\label{context_2} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{over_}{Over $Top$}\dotfill \pageref*{over_} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Boardman-Vogt resolution} or \emph{W-construction} is a particular choice of cofibrant [[resolution]] of [[topological operads]] (or [[simplicial operads]] or similar). It is closely related to the operation of forming the [[dendroidal homotopy coherent nerve]]. Its restriction to [[Top]]-[[enriched categories]] / [[simplicial categories]] is accordingly closely related to the ordinary [[homotopy coherent nerve]]. The construction is an variant of the \emph{[[free operad]]} construction, where the free composites of operations are further labeled by ``distances'' such that for vanishing distance the free composite is replaced with the actual composite. The original Boardman-Vogt resolution over [[Top]] generalizes naturally to a cofibrant [[resolution]] in the [[model structure on operads]] for operads enriched over any suitable [[monoidal model category]] that is equipped with a suitable [[comonoid|comonoidal]] [[interval object]]. In this general form the construction subsumes \begin{itemize}% \item the W-construction on topological operads (\hyperlink{BoardmanVogt}{BoardmanVogt}); \item the cobar-bar resolution of chain complex operads (\hyperlink{GetzlerJones}{GezlerJones}, \hyperlink{GinzburgKapranov}{GinzburgKapranov}); \item the Godement simplicial resolution (\hyperlink{Godement}{Godement}) \end{itemize} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{over_}{}\subsubsection*{{Over $Top$}}\label{over_} Over [[Top]] the BV-resolution works as follows: for $P$ a [[topological operad]], its [[free operad]] $F_*(P)$ has as $n$-ary operations all [[trees]] with $n$ inputs, with each vertex of valence $k+1$ labeled by an element in $P(k)$. Composition is given by grafting of trees. The operad $W(P)$ is obtained from this by in addition \begin{itemize}% \item labeling the inner edges of any tree by [[real number]]s $\ell \in [0,1]$; \item identifying trees one of whose edges has length 0 with the tree with that edge removed and with the correspnding operad-operation labels composed. \item equipping the set of labeled trees with the corresponding quotient of the product topology, to make it into a [[topological space]]. \end{itemize} There is an evident operad morphism $F_*(P) \to W(P)$ obtained by regarding each edge of a tree as being of length 1, and there is an evident morphism $W(P) \to P$ obtained by forgetting all trees and sending their operad-operation-labels to their composite. The composition \begin{displaymath} F_*(P) \to W(P) \to P \end{displaymath} is the [[unit of an adjunction|counit]] of the [[free functor|free]]/forgetful [[adjunction]] between operads and their underlying [[collection]]s and if $P$ is degreewise sufficiently nice, this factors that counit as a cofibration followed by a weak equivalence and exhibits $W(P)$ as a cofibrant [[resolution]] of $P$. \hypertarget{general}{}\subsubsection*{{General}}\label{general} Write $\mathbb{T}$ for the [[groupoid]] of planar [[trees]] and non-planar [[isomorphism]]. Fix a suitable [[interval object]] $H$, as described at [[model structure on operads]]. For $T$ a [[tree]], write \begin{displaymath} H(T) := \bigotimes_{e \in E(T)}H \,, \end{displaymath} where the tensor product runs over all \emph{internal} edges of $T$. For $D \subset E(T)$ a subset of internal edges, let \begin{displaymath} H_D(T) = \bigotimes_{ E(T)\setminus D} H \,. \end{displaymath} The acyclic cofibration $0 \to H$ induces an acyclic cofibration \begin{displaymath} H_D(T) \hookrightarrow H(T) \end{displaymath} and, by the [[pushout-product axiom]], an acyclic cofibration \begin{displaymath} H^-(T) := \coprod_{D \neq \emptyset} H_D(T) \hookrightarrow H(T) \,. \end{displaymath} In a similar fashion, for $P$ an operad, write $P(T)$ for the tensor product of one copy of its objects of $n$-ary operation for each $n$-ary vertex in $T$, and $P^-(T)$ for the coproduct over all such tensor products where at least one, maybe more, \emph{unary} vertices are omitted. Also the canonical \begin{displaymath} P^-(T) \hookrightarrow P(T) \end{displaymath} is a cofibration. Consider for each $T$ the [[pushout]] \begin{displaymath} \itexarray{ H^-(T) \otimes P^-(T) &\to& H^-(T) \otimes P(T) \\ \downarrow && \downarrow \\ H(T) \otimes P^-(T) &\to& (H \otimes P)^-(T) } \,. \end{displaymath} This induces a univesal morphism \begin{displaymath} (H \otimes P)^-(T) \to H(T) \otimes P(T) \end{displaymath} and by the [[pushout-product axiom]] in the [[monoidal model category]] $\mathcal{E}$ this, too, is a cofibration. \begin{udefn} Define $W(H,P)$ by induction. Start with setting \begin{displaymath} W_0(H,P) := P \,. \end{displaymath} Assume that in each induction step we are given morphisms \begin{displaymath} (H(S) \otimes P(S)) \otimes_{Aut(S)} I[\Sigma_n] \to W_{k-1}(H,P)(n) \end{displaymath} for all trees $S$ with less than $k$ internal edges. Using the composition operation in the operad $P$ to compose two operation when the edge connecting them carries no $H$-label, we obtain from this a morphism \begin{displaymath} \alpha_T^- : (H \otimes P)^-(T) \otimes_{Aut(T)} I[\Sigma_n] \to W_{k-1}(H,P)(n) \end{displaymath} Then in the induction step we define for each $k \in \mathbb{N}$ the object $W_n(H,P)$ by the [[pushout]] \begin{displaymath} \itexarray{ \coprod_{[T], T \in \mathbb{T}(n,k)} (H \otimes P)^-(T) \otimes_{Aut(T)} I[\Sigma_n] &\stackrel{\coprod \alpha_T^-}{\to}& W_{k-1}(H,P)(n) \\ \downarrow && \downarrow \\ \coprod_{[T], T \in \mathbb{T}(n,k)} (H \otimes P)(T) \otimes_{Aut(T)} I[\Sigma_n] &\stackrel{\coprod \alpha_T^-}{\to}& W_{k}(H,P)(n) } \,, \end{displaymath} where $\mathbb{T}$ is the subcategory of trees with precisely $n$ inputs and $k$ internal edges. The bottom morphism we feed back into the induction procedure. This gives a sequence of collections, and the W-resolution is its [[colimit]] \begin{displaymath} W(H,P) := {\lim_{\to}}_k W_k(H,P) \,. \end{displaymath} \end{udefn} One shows that this collection naturally carries the structure of an operad, etc. pp. \begin{uremark} The object $(H \otimes P)(T)$ is to be thought of as the space whose points are tuples conisting of one operation in $P$ per vertex in $T$, of that arity, and of labels in $H$ assigned to the inner edges in $T$. The object $(H \otimes P)^-(T)$ is a similar space, but where some of the labels on the inner edges are omitted. The above pushout identifies points that contain lables of inner edges that are 0 with points in one $W$-stratum below where that edge (or rather its label) is simply omitted and the corresponding operations composed. \end{uremark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Jim Stasheff]]`s [[A-∞ operad]] is the relative Boardman-Vogt resolution $W([0,1], I_* \to Assoc)$ of [[Assoc]] in [[Top]] where $I_*$ is the operad for [[pointed object]]s (\hyperlink{BergerMoerdijkAlgebras}{Berger-Moerdijk}). \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The W-construction on topological operads is in \begin{itemize}% \item [[Michael Boardman]] and [[Rainer Vogt]], \emph{Homotopy invariant algebraic structures on topological spaces} , Lect. Notes Math. 347 (1973). \end{itemize} The cobar-bar resolution of chain complex operads is in \begin{itemize}% \item [[Ezra Getzler]], J.D.S. Jones, \emph{Operads, homotopy algebra, and iterated integrals for double loop spaces} , (1995) \item [[Victor Ginzburg]], [[Mikhail Kapranov]], \emph{Koszul duality for operads} , Duke Math. J. 76 (1994) 203--272. \end{itemize} The Godement simplicial resolution is in \begin{itemize}% \item R. Godement, \emph{Topologie alg\'e{}brique et th\'e{}orie des faisceaux} , no. 13, Publ. Math. Univ. Strasbourg, Hermann, Paris, 1958. \end{itemize} The generalization to [[operad]]s enriched in any monoidal category with a suitable interval object is in \emph{ [[Clemens Berger]], [[Ieke Moerdijk]], \emph{The Boardman-Vogt resolution of operads in monoidal model categories} , Topology 45 (2006), 807--849. (\href{http://math.unice.fr/~cberger/BV.pdf}{pdf})} \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{Resolution of coloured operads and rectification of homotopy algebras} (\href{http://arxiv.org/abs/math/0512576}{arXiv:math/0512576}) \end{itemize} The Boardman-Vogt-resolution for the operad for [[local nets of observables]] in [[homotopical algebraic quantum field theory]] (\href{homotopical+algebraic+quantum+field+theory#BeniniSchenkelWoike17}{Benini-Schenkel-Woike 17}) is discussed in \begin{itemize}% \item [[Donald Yau]], \emph{Homotopical Quantum Field Theory} (\href{https://arxiv.org/abs/1802.08101}{arXiv:1802.08101}) \end{itemize} [[!redirects Boardman-Vogt resolutions]] [[!redirects W-construction]] [[!redirects W-constructions]] [[!redirects relative Boardman-Vogt resolution]] [[!redirects relative Boardman-Vogt resolutions]] \end{document}