\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bockstein homomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Bockstein homomorphism} is a [[connecting homomorphism]] induced from a [[short exact sequence]] whose injective map is given by multiplication with an [[integer]]. The archetypical examples are the Bockstein homomorphisms induced this way from the short exact sequence \begin{displaymath} \mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z} \stackrel{}{\to} \mathbb{Z}/2\mathbb{Z} \,. \end{displaymath} These relate notably degree-$n$ [[cohomology]] with [[coefficients]] in $\mathbb{Z}_2$ (such as [[Stiefel-Whitney classes]]) to cohomology with integral coefficients in degree $n+1$ (such as [[integral Stiefel-Whitney classes]]). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $A$ be an [[abelian group]] and $m$ be an [[integer]]. Then multiplication by $m$ \begin{displaymath} A \stackrel{m\cdot}{\to} A \end{displaymath} induces a [[short exact sequence]] of abelian groups \begin{displaymath} 0\to A/A_{m-tors} \stackrel{m\cdot}{\to} A \to A/m A\to 0, \end{displaymath} where $A_{m-tors}$ is the subgroup of $m$-[[torsion subgroup|torsion elements]] of $A$, and so a long [[fiber sequence]] \begin{displaymath} \cdots \mathbf{B}^n (A/A_{m-tors}) \to \mathbf{B}^n A \to \mathbf B^n(A/ m A) \to \mathbf{B}^{n+1} (A/A_{m-tors}) \to \cdots \end{displaymath} of [[∞-groupoid]]s, where $\mathbf{B}^n(-)$ denotes the $n$-fold [[delooping]] (hence $\mathbf{B}^n A$ is the [[Eilenberg-MacLane object]] on $A$ in degree $n$). This induces, in turn, for any object $X \in \mathbf{H}$ (for $\mathbf{H}$ the ambient [[(∞,1)-topos]], such as [[Top]] $\simeq$ [[∞Grpd]]) , a long [[fiber sequence]] \begin{displaymath} \cdots \mathbf{H}(X,\mathbf{B}^n (A/A_{m-tors})) \to \mathbf{H}(X,\mathbf{B}^n A) \to \mathbf{H}(X,\mathbf B^n(A/ m A)) \stackrel{\beta_m}{\to} \mathbf{H}(X,\mathbf{B}^{n+1} (A/A_{m-tors})) \to \cdots \end{displaymath} of [[cocycle]] [[∞-groupoids]]. Here the [[connecting homomorphisms]] $\beta_m$ are called the \textbf{Bockstein homomorphisms}. Notice that often this term is used to refer only to the image of the above in [[cohomology]], hence to the image of $\beta_m$ under [[0-truncated|0-truncation]]/[[homotopy group|0th homotopy group]] $\pi_0$: \begin{displaymath} \beta_m : H^n(X,A/ m A) \to H^{n+1}(X,(A/A_{m-tors})) \,. \end{displaymath} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{Mod2BocksteinIntoIntegralCohomology}\hypertarget{Mod2BocksteinIntoIntegralCohomology}{} \textbf{(mod 2 Bockstein homomorphism into [[integral cohomology]])} The Bockstein homomorphism $\beta$ for the sequence \begin{displaymath} \mathbb{Z} \stackrel{\cdot 2}{\longrightarrow} \mathbb{Z} \stackrel{mod\, 2}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \end{displaymath} serves to define [[integral Stiefel-Whitney classes]] \begin{displaymath} W_{n+1} \coloneqq \beta w_n \end{displaymath} in degree $n+1$ from $\mathbb{Z}/2\mathbb{Z}$-valued [[Stiefel-Whitney classes]] in degree $n$. \end{example} \begin{example} \label{Mod2BocksteinIntoMod2Cohomology}\hypertarget{Mod2BocksteinIntoMod2Cohomology}{} \textbf{(first [[Steenrod square]])} The Bockstein homomorphism for the sequence \begin{displaymath} \mathbb{Z}/2\mathbb{Z} \overset{\cdot 2}{\longrightarrow} \mathbb{Z}/4\mathbb{Z} \overset{mod\, 2}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \end{displaymath} is also called the \emph{first [[Steenrod square]]}, denoted $Sq^1$. This is often equivalently denoted $\beta$, as in example \ref{Mod2BocksteinIntoIntegralCohomology}. The difference between the two is just the mod-2 reduction in their codomain: \begin{equation} \itexarray{ \mathbb{Z} &\overset{\cdot 2}{\longrightarrow}& \mathbb{Z} &\overset{mod\, 2}{\longrightarrow}& \mathbb{Z}/2\mathbb{Z} &\simeq& \mathbb{Z}/2\mathbb{Z} &\overset{\beta}{\longrightarrow}& B \mathbb{Z} \\ \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{mod\, 4}} && \downarrow^{\mathrlap{id}} && \downarrow^{ id } && \downarrow^{\mathrlap{B(mod\, 2)}} \\ \mathbb{Z}/2\mathbb{Z} &\underset{\cdot 2 }{\longrightarrow}& \mathbb{Z}/4\mathbb{Z} &\underset{mod\, 2}{\longrightarrow}& \mathbb{Z}/2\mathbb{Z} &\simeq& (\mathbb{Z}/4\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z}) &\underset{Sq^1}{\longrightarrow}& B (\mathbb{Z}/2\mathbb{Z}) } \label{Mod2BocksteinSequences}\end{equation} More generally, for $p$ any [[prime number]] the multiplication by $p$ on $\mathbb{Z}_{p^2}$ induces the short exact sequence $\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/{p^2}\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$. The corresponding Bockstein homomorphism $\beta_p$ appears as one of the generators of the mod $p$ [[Steenrod algebra]]. \end{example} \begin{example} \label{IntegralSteenrodSquares}\hypertarget{IntegralSteenrodSquares}{} \textbf{([[integral Steenrod squares]])} For [[odd natural numbers|odd]] $2n + 1 \in \mathbb{N}$ defines the [[integral Steenrod squares]] to be \begin{displaymath} Sq^{2n + 1}_{\mathbb{Z}} \;\coloneqq\; \beta \circ Sq^{2n} \,. \end{displaymath} By example \ref{Mod2BocksteinIntoMod2Cohomology} and by the first [[Adem relation]] $Sq^1 \circ Sq^{2n} = Sq^{2n+1}$ (\href{Steenrod+square#CompositionWithSq1}{this example}) these indeed are lifts of the odd [[Steenrod squares]]: \begin{displaymath} (mod\, 2) \circ Sq^{2n + 1}_{\mathbb{Z}} \;=\; Sq^{2n+1} \,, \end{displaymath} because, by \eqref{Mod2BocksteinSequences} we have \begin{displaymath} \itexarray{ Sq^{2n+1}_{\mathbb{Z}} &\colon& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{Sk^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{ \beta }{\longrightarrow}& B^{\bullet + 2n + 1} \mathbb{Z} \\ && \downarrow^{ id } && \downarrow^{ id } && \downarrow^{\mathrlap{B^{k + 2 n + 1}(mod\, 2)}} \\ Sq^{2n+1} &\colon& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{Sk^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{ Sq^1 }{\longrightarrow}& B^{\bullet + 2n + 1} (\mathbb{Z}/2\mathbb{Z}) } \end{displaymath} \end{example} When $A=\mathbb{Z}$, the equivalence $\vert \mathbf{B}^{n+1}\mathbb{Z} \vert \cong \vert \mathbf{B}^n U(1)\vert$ (which holds in ambient contexts such as $\mathbf{H} =$ [[ETop∞Grpd]] or [[Smooth∞Grpd]] under [[geometric realization]] $\vert - \vert : ETop \infty Grpd \stackrel{\Pi}{\to} \infty Grpd \stackrel{\simeq}{\to} Top$) identifies the morphisms $\mathbf{B}^n(\mathbb{Z}_m)\to \mathbf{B}^{n+1}\mathbb{Z}$ with the morphisms $\mathbf{B}^n(\mathbb{Z}_m)\to \mathbf{B}^{n} U(1)$ induced by the inclusion of the subgroup of $m$-th roots of unity into $U(1)$. This identifies the Bockstein homomorphism $\beta_m: H^n(X;\mathbb{Z}_m)\to H^{n+1}(X;\mathbb{Z})$ with the natural homomorphism $H^n(X;\mathbb{Z}_m)\to H^{n}(X;U(1))$. More in detail: \begin{example} \label{Mod2BocksteinAndExponentialExactSequence}\hypertarget{Mod2BocksteinAndExponentialExactSequence}{} \textbf{(mod 2 [[Bockstein homomorphism]] and the [[exponential exact sequence]])} Let \begin{enumerate}% \item $\beta \;\colon\; \mathbb{Z}/2\mathbb{Z} \longrightarrow B \mathbb{Z}$ be the ordinare Bockstein homomorphism \item $\iota\coloneqq (\cdot \pi) \;\colon\; \mathbb{Z}/2\mathbb{Z} \hookrightarrow U(1)$ the canonical inclusion; \item $\delta \;\colon\; U(1) \longrightarrow B\mathbb{Z}$ the classifying map. \end{enumerate} Then \begin{displaymath} \beta \;=\; \delta \circ \iota \,. \end{displaymath} Because \begin{displaymath} \itexarray{ \mathbb{Z} &\overset{\cdot 2}{\longrightarrow}& \mathbb{Z} &\overset{mod\, 2}{\longrightarrow}& \mathbb{Z}/2\mathbb{Z} &\simeq& \mathbb{Z}/2\mathbb{Z} &\overset{\beta}{\longrightarrow}& B \mathbb{Z} \\ \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{\cdot \pi}} && \downarrow^{\mathrlap{\cdot \pi}} && \downarrow^{\iota \coloneqq \mathrlap{\cdot \pi}} && \downarrow^{\mathrlap{id}} \\ \mathbb{Z} &\underset{\cdot 2 \pi}{\longrightarrow}& \mathbb{R} &\underset{mod\, 2\pi}{\longrightarrow}& U(1) &\simeq& \mathbb{R}/2\pi\mathbb{Z} &\underset{\delta}{\longrightarrow}& B \mathbb{Z} } \end{displaymath} \end{example} \begin{prop} \label{SteenrodSquaresAndDBCupProductOnOddClasses}\hypertarget{SteenrodSquaresAndDBCupProductOnOddClasses}{} \textbf{([[Deligne-Beilinson cup product]] on odd-degree [[ordinary differential cohomology]])} Let \begin{displaymath} \hat H \;\colon\; X \longrightarrow \mathbf{B}^{2n} U(1)_{conn}) \end{displaymath} be a class in [[ordinary differential cohomology]] with underlying class in odd degree \begin{displaymath} [H] \;\colon\; X \overset{\hat H}{\longrightarrow} \mathbf{B}^{n} U(1)_{conn} \overset{\chi}{\longrightarrow} B^{2n+1} \mathbb{Z} \end{displaymath} This implies that its [[Beilinson-Deligne cup product]] with itself satisfies \begin{displaymath} \hat H \hat \cup \hat H = - \hat H \hat \cup \hat H \end{displaymath} hence \begin{displaymath} 2 \hat H \hat \cup \hat H \;\simeq\; 0 \end{displaymath} hence \begin{displaymath} 2 [H] \cup [H] \;\simeq\; 0 \end{displaymath} hence that the ordinary [[cup product]] $[H] \cup [H]$ is a 2-torsion class. Let then \begin{displaymath} j \;\colon\; \mathbf{B}^{4n+1} \mathbb{Z}/2\mathbb{Z} \overset{ B^{4n+1} (\iota) }{\hookrightarrow} \flat \mathbf{B}^{4n+1} U(1) \longrightarrow \mathbf{B}^{4n+1} U(1)_{conn} \end{displaymath} with $\iota$ from example \ref{Mod2BocksteinAndExponentialExactSequence}. Then \begin{displaymath} \hat H \hat \cup \hat H \;\simeq\; j Sq^{2n}([H]_{mod\,2}) \,. \end{displaymath} This is a [[differential cohomology]]-refinement of the first [[Adem relation]] $Sq^1 \circ Sq^{2n} = Sq^{2n+1}$ on the [[Steenrod squares]] (\href{Steenrod+square#CompositionWithSq1}{this example}) in that, by example \ref{Mod2BocksteinAndExponentialExactSequence}, its image in ordinary cohomology with coefficients in $\mathbb{Z}/2\mathbb{Z}$ is \begin{displaymath} \itexarray{ ([H] \cup [H])_{mod 2} & \simeq & \underset{ \beta }{ \underbrace{ Sq^1 }} \circ Sq^{2n}([H]_{mod\,2}) \\ = \\ [H]_{mod\, 2} \cup [H]_{mod,2} \\ = \\ Sq^{2n+1}([H]_{mod\, 2}) } \,. \end{displaymath} \end{prop} This was first observed in (\hyperlink{Gomi08}{Gomi 08}). Streamlined proofs are given in (\hyperlink{Bunke12}{Bunke 12, propblem 3.106}, \hyperlink{GradySati16}{Grady-Sati 16, prop. 22}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Steenrod squares]], [[cohomology operation]] \item [[Bockstein spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original references include \begin{itemize}% \item [[Meyer Bockstein]], \emph{Universal systems of $\nabla$-homology rings}, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 243--245, MR0008701 \emph{A complete system of fields of coefficients for the $\nabla$-homological dimension} , C. R. (Doklady) Acad. Sci. URSS (N.S.) (1943), 38: 187--189, MR0009115 \item [[Meyer Bockstein]], \emph{Sur la formule des coefficients universels pour les groupes d'homologie} , Comptes Rendus de l'acad\'e{}mie des Sciences. S\'e{}rie I. Math\'e{}matique (1958), 247: 396--398, MR0103918 \end{itemize} The relation to the [[Beilinson-Deligne cup product]] is discussed in \begin{itemize}% \item [[Kiyonori Gomi]], \emph{Differential characters and the Steenrod squares}, In Groups of diffeomorphisms, volume 52 of Adv. Stud. Pure Math., pages 297?308. Math. Soc. Japan, Tokyo, 2008 \item [[Ulrich Bunke]], problem 3.106 in \emph{Differential cohomology} (\href{https://arxiv.org/abs/1208.3961}{arXiv:1208.3961}) \item Daniel Grady, [[Hisham Sati]], prop. 22 in \emph{Primary operations in differential cohomology}, Adv. Math. 335 (2018), 519-562 (\href{https://arxiv.org/abs/1604.05988}{arXiv:1604.05988}, \href{https://www.sciencedirect.com/science/article/pii/S0001870818302676?via%3Dihub}{doi:10.1016/j.aim.2018.07.019}) \end{itemize} [[!redirects Bockstein homomorphisms]] [[!redirects Bockstein morphism]] [[!redirects Bockstein morphisms]] [[!redirects Bockstein operation]] [[!redirects Bockstein operations]] \end{document}