\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bogoliubov's formula} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_the_wouldbe_path_integral}{Relation to the would-be path integral}\dotfill \pageref*{relation_to_the_wouldbe_path_integral} \linebreak \noindent\hyperlink{causal_locality_of_interacting_field_quantum_observables}{Causal locality of interacting field quantum observables}\dotfill \pageref*{causal_locality_of_interacting_field_quantum_observables} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In ([[perturbative quantum field theory|perturbative]]) [[quantum field theory]], what is called \emph{Bogoliubov's formula}, originally due to (\hyperlink{BogoliubovShirkov59}{Bogoliubov-Shirkov 59}) is an expression for the [[interacting quantum observables]] as the [[derivatives]] with respect to a [[source field]] of the [[generating function]] corresponding to a given [[S-matrix]]. Originally this is an ad-hoc formula, motivated by the would-be [[path integral]] picture of the [[Feynman perturbation series]] (remark \ref{InterpretationOfPerturbativeSMatrix} below) and mathematically justified by the fact that it does yield a [[causally local net of observables]] in [[causal perturbation theory]] (prop. \ref{CausalLocalityOfBogoliubovFormula} below). Much more recently it was shown that Bogoliubov's formula indeed expresses quantum observables as systematically obtained by [[Fedosov deformation quantization]] of [[field theory]] (\hyperlink{Collini16}{Collini 16}, \hyperlink{HawkinsRejzner16}{Hawkins-Rejzner 16}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\Sigma$ be a [[spacetime]] of [[dimension]] $p + 1$ and let $E \overset{fb}{\longrightarrow} \Sigma$ be a [[field bundle]]. Let $\mathbf{L}_{free}\in \Omega^{p+1,0}_\Sigma(E)$ be a [[local Lagrangian density]] for a [[free field theory]] with [[field (physics)|fields]] of type $E$. Let $\mathcal{W}$ be the corresponding [[Wick algebra]] of [[quantum observables]] of the free field, with \begin{displaymath} LocObs(E_{\text{BV-BRST}}) \overset{:(-):}{\longrightarrow} PolyObs(E_{\text{BV-BRST}}) \end{displaymath} the corresponding quantization map from [[local observables]] (``[[normal ordering]]''). Let then \begin{displaymath} \mathcal{S} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [\hbar, g, j] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})((\hbar))[ [g,j] ] \end{displaymath} be a [[perturbative S-matrix]] scheme. Moreover let \begin{displaymath} g S_{int} \in LocObs(E_{\text{BV-BRST}})[ [\hbar, g] ] \end{displaymath} be an [[adiabatic switching|adiabatically switched]] [[interaction]]-[[action functional|functional]]. For $A \in \mathcal{F}_{loc}$ a [[local observable]] and $j \in C^\infty_{cp}(\Sigma)$, write \begin{displaymath} \mathcal{Z}_{g S_{int}}(j A) \; \coloneqq \; \mathcal{S}(g S_{int})^{-1} \mathcal{S}( g S_{int} + j A ) \end{displaymath} for the [[generating function]] induced by the perturbative [[S-matrix]] (where the product shown by juxtaposition is that in the [[Wick algebra]], hence the [[star product]] induced by the [[Wightman propagator]]). \begin{defn} \label{GeneratingFunctionsForCorrelationFunctions}\hypertarget{GeneratingFunctionsForCorrelationFunctions}{} \textbf{([[Bogoliubov's formula]])} The perturbative [[interacting field observable]] \begin{displaymath} A_{int} \;\in\; PolyObs(E_{\text{BV-BRST}})[ [ \hbar, g] ] \end{displaymath} corresponding to a [[free field]] [[local observable]] $A \in LocObs(E_{\text{BV-BRST}})$ is the [[coefficient]] in the [[generating function]] $\mathcal{S}$ (\href{S-matrix#SchemeGeneratingFunction}{this def.}) of the term linear in the [[source field]] strenght $j$: \begin{displaymath} A_{int} \;\coloneqq\; i \hbar \frac{d}{d j } \mathcal{Z}_{ g S_{int}}( j A)\vert_{j = 0} \,. \end{displaymath} \end{defn} This is due to \hyperlink{BogoliubovShirkov59}{Bogoliubov-Shirkov 59}, later named \emph{Bogoliubov's formula} (e.g. \hyperlink{Rejzner16}{Rejzner 16 (6.12)}). Based on this [[causal perturbation theory]] was formulated in (\hyperlink{EpsteinGlaser73}{Epstein-Glaser 73 around (74)}). Review includes (\hyperlink{DuetschFredenhagen00}{D\"u{}tsch-Fredenhagen 00, around (17)}). The assignment $A \mapsto A_{int}$ is also called the \emph{[[quantum Møller operator]]}. The [[coefficients]] of $A_{int}$ as a [[formal power series]] in the [[coupling constant]] and [[Planck's constant]] are called the \emph{[[retarded products]]}. \begin{remark} \label{PowersInPlancksConstant}\hypertarget{PowersInPlancksConstant}{} \textbf{(powers in [[Planck's constant]])} That the observables as defined in def. \ref{GeneratingFunctionsForCorrelationFunctions} indeed are [[formal power series]] in $\hbar$ as opposed to more general [[Laurent series]] requires a little argument. The explicit $\hbar$-dependence of the perturbative [[S-matrix]] is \begin{displaymath} \mathcal{S}(g S_{int} + j A) = T \exp\left( \tfrac{1}{i \hbar} \left( g S_{int} + j A \right) \right) \,, \end{displaymath} where $T(-)$ denotes [[time-ordered products]]. The generating function \begin{displaymath} \mathcal{Z}_{S_{int}}(j A) \;\coloneqq\; \mathcal{S}(S_{int})^{-1} \star_H \mathcal{S}(g S_{int} + j A) \end{displaymath} involves the [[star product]] of the free theory (the [[normal-ordered product]] of the [[Wick algebra]]). This is a [[formal deformation quantization]] of the [[Peierls-Poisson bracket]], and therefore the [[commutator]] in this algebra is a [[formal power series]] in $\hbar$ that however has no constant term in $\hbar$ (but starts out with $\hbar$ times the [[Poisson bracket]], followed by possibly higher order terms in $\hbar$): \begin{displaymath} [L_{int},A] \;=\; \hbar(\cdots) \,. \end{displaymath} Now schematically the derivative of the generating function is of the form \begin{displaymath} \begin{aligned} A_{int} & \coloneqq i \hbar \frac{d}{d j } \mathcal{Z}_{ S_{int}}(j A)\vert_{j = 0} \\ & = \exp\left( \tfrac{1}{i \hbar}[g S_{int}, -] \right) (A) \end{aligned} \,. \end{displaymath} (The precise expression is given by the \emph{[[retarded products]]}, see \hyperlink{DuetschFredenhagen00}{Dütsch-Fredenhagen 00, prop. 2 (ii)} \hyperlink{Rejzner16}{Rejzner 16, prop. 6.1}, \hyperlink{HawkinsRejzner16}{Hawkins-Rejzner 16, cor. 5.2}.) By the above, the exponent here yields a [[formal power series]] in $\hbar$, and hence so does the full exponential. That the quantum observables takes values in formal power series of $\hbar$ is the hallmark of [[formal deformation quantization]]. While [[Bogoliubov's formula]] proceeds from an [[S-matrix]] which is axiomatized by [[causal perturbation theory]], this suggests that it actually computes the quantum observables in a [[formal deformation quantization]] of the interacting field theory. This is indeed the case (\hyperlink{Collini16}{Collini 16}, \hyperlink{HawkinsRejzner16}{Hawkins-Rejzner 16}). For the analogous analysis of powers of $\hbar$ in the [[S-matrix]] itself, see at \emph{[[loop order]]} the section \emph{\href{loop%20order#RelationToPowersInPlancksConstant}{Relation to powers in Planck's constant}}. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_the_wouldbe_path_integral}{}\subsubsection*{{Relation to the would-be path integral}}\label{relation_to_the_wouldbe_path_integral} \begin{remark} \label{InterpretationOfPerturbativeSMatrix}\hypertarget{InterpretationOfPerturbativeSMatrix}{} \textbf{(interpretation of Bogoliubov's formula via a ``[[path integral]]'')} In informal heuristic discussion of [[perturbative quantum field theory]] the [[S-matrix]] is thought of as a [[path integral]], written \begin{displaymath} S\left( \tfrac{g}{\hbar} L_{int} + j \right) \;\overset{\text{not really!}}{=}\; \underset{\Phi \in \Gamma_\Sigma(E)_{asmpt}}{\int} \exp\left( \int_X \left( \tfrac{g}{i \hbar} L_{int}(\Phi) + j A(\Phi) \right) \right) e^{\tfrac{1}{i \hbar}\int_X L_{free}(\Phi) }D[\Phi] \end{displaymath} where the integration is thought to be over the [[configuration space]] $\Gamma_\Sigma(E)_{asmpt}$ of [[field (physics)|fields]] $\Phi$ (the [[space of sections]] of the given [[field bundle]]) which satisfy given asymptotic conditions at $x^0 \to \pm \infty$; and as these boundary conditions vary the above is regarded as an integral kernel that defines the required operator in $\mathcal{W}$. With the perturbative S-matrix informally thought of as a path integral this way, the the Bogoliubov formula in def. \ref{GeneratingFunctionsForCorrelationFunctions} similarly would have the following interpretation: \begin{displaymath} A_{int} \;\overset{\text{not really!}}{=}\; \frac{ \int j A(\Phi) \exp\left( \int_X \left( \tfrac{g}{i \hbar} L_{int}(\Phi) \right) \right) e^{\tfrac{1}{i \hbar}\int_X L_{free}(\Phi) }D[\Phi] } { \int \exp\left( \int_X \left( \tfrac{g}{i \hbar} L_{int}(\Phi) \right) \right) e^{\tfrac{1}{i \hbar}\int_X L_{free}(\Phi) }D[\Phi] } \end{displaymath} If here we were to regard the expression \begin{displaymath} \mu(\Phi) \;\overset{\text{not really}}{\coloneqq}\; \frac{ \exp\left( \int_X \left( \tfrac{g}{i \hbar} L_{int}(\Phi) \right) \right) e^{\tfrac{1}{i \hbar}\int_X L_{free}(\Phi) }D[\Phi] } { \int \exp\left( \int_X \left( \tfrac{g}{i \hbar} L_{int}(\Phi) \right) \right) e^{\tfrac{1}{i \hbar}\int_X L_{free}(\phi) }D[\phi] } \end{displaymath} as a ``complex probability measure'' on the the configuration space of fields, then this formula would express the [[expectation value]] of the functional $A$ under this measure: \begin{displaymath} A_{int} \overset{\text{not really!}}{=} [A]_{\mu} = \int A(\Phi) \, \mu(\Phi) \,. \end{displaymath} \end{remark} \hypertarget{causal_locality_of_interacting_field_quantum_observables}{}\subsubsection*{{Causal locality of interacting field quantum observables}}\label{causal_locality_of_interacting_field_quantum_observables} \begin{prop} \label{CausalLocalityOfBogoliubovFormula}\hypertarget{CausalLocalityOfBogoliubovFormula}{} \textbf{([[causal locality]])} As the spacetime support varies, the algebras of [[interacting field quantum observables]] spanned via the Bogoliubov formula consistitute a [[causally local net of observables]], hence an instance of [[perturbative AQFT]]. \end{prop} (\hyperlink{DuetschFredenhagen00}{D\"u{}tsch-Fredenhagen 00, section 3}, following \hyperlink{BrunettiFredenhagen99}{Brunetti-Fredenhagen 99, section 8}, \hyperlink{IlinSlavnov78}{Il'in-Slavnov 78}) For \textbf{[[proof]]} see \href{S-matrix#PerturbativeQuantumObservablesIsLocalnet}{this prop.} at \emph{[[S-matrix]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quantum Møller operator]] \item [[interacting field algebra]] \end{itemize} [[!include products in pQFT -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The formula originates in \begin{itemize}% \item [[Nikolay Bogoliubov]], [[Dmitry Shirkov]], \emph{Introduction to the Theory of Quantized Fields}, New York (1959) \end{itemize} Its rigorous discussion in terms of [[causal perturbation theory]] is due to \begin{itemize}% \item [[Henri Epstein]], [[Vladimir Glaser]], \emph{[[The Role of locality in perturbation theory]]}, Annales Poincar\'e{} Phys. Theor. A 19 (1973) 211 (\href{http://www.numdam.org/item?id=AIHPA_1973__19_3_211_0}{Numdam}) \end{itemize} The observation that the Bogoliubov formula yields a [[causally local net of quantum observables]] is due to \begin{itemize}% \item V. A. Il'in and D. S. Slavnov, \emph{Observable algebras in the S-matrix approach}, Theor. Math. Phys. 36 (1978) 32. (\href{http://inspirehep.net/record/135575}{spire}, \href{http://dx.doi.org/10.1007/BF01035870}{doi}) \end{itemize} then rediscovered in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661, 2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \end{itemize} and made more explicit in \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion}, Commun.Math.Phys. 219 (2001) 5-30 (\href{https://arxiv.org/abs/hep-th/0001129}{arXiv:hep-th/0001129}) \end{itemize} The recognition of the Bogoliubov formula as the result [[formal deformation quantization]] and specifically of [[Fedosov deformation quantization]] is due to \begin{itemize}% \item [[Giovanni Collini]], section 2.2 of \emph{Fedosov Quantization and Perturbative Quantum Field Theory} (\href{https://arxiv.org/abs/1603.09626}{arXiv:1603.09626}) \item [[Eli Hawkins]], [[Kasia Rejzner]], \emph{The Star Product in Interacting Quantum Field Theory} (\href{https://arxiv.org/abs/1612.09157}{arXiv:1612.09157}) \end{itemize} Review includes \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion}, Commun.Math.Phys. 219 (2001) 5-30 (\href{https://arxiv.org/abs/hep-th/0001129}{arXiv:hep-th/0001129}) \item [[Katarzyna Rejzner]], \emph{Perturbative Algebraic Quantum Field Theory}, Mathematical Physics Studies, Springer 2016 (\href{https://link.springer.com/book/10.1007%2F978-3-319-25901-7}{pdf}) \end{itemize} [[!redirects Bogoliubov formula]] \end{document}