\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bohr compactification} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_and_existence}{Definition and existence}\dotfill \pageref*{definition_and_existence} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Bohr compactification} is a kind of [[compactification]] of a [[topological group]] to one that is [[compact topological space|compact]] [[Hausdorff topological space|Hausdorff]]. \hypertarget{definition_and_existence}{}\subsection*{{Definition and existence}}\label{definition_and_existence} Let $i: CHGrp \to TopGrp$ denote the full embedding of the category of compact Hausdorff topological groups into the category of all topological groups. Let $G$ be a topological group. \begin{defn} \label{}\hypertarget{}{} The \emph{Bohr compactification} $Bohr(G)$ is a representing object for the functor $TopGrp(G, i-): CHGrp \to Set$. \end{defn} \begin{theorem} \label{}\hypertarget{}{} The Bohr compactification exists for any topological group $G$. \end{theorem} \begin{proof} We verify that the hypotheses of the general [[adjoint functor theorem]] are satisfied. Certainly $CHGrp$ is complete, and $i: CHGrp \to TopGrp$ preserves small limits since products and equalizers in $CHGrp$ are formed just as they are in $TopGrp$. We must now show there is a small solution set, i.e., a [[weakly initial set]] for the comma category $G \downarrow i$. Let $I = [0, 1]$ be the unit [[interval]] with its standard topology. There is a canonical map $u_G: G \to I^{Top(G, I)}$ where $u: id \to M$ is the unit of the monad $M = I^{Top(-, I)}$ on $Top$; note $u_X$ is a closed embedding if $X$ is compact Hausdorff (see the discussion \href{http://ncatlab.org/nlab/show/compactum#StoneCechCompactification}{here}). We claim that the collection of closed subspaces of $I^{Top(G, I)}$ that come equipped with topological group structures is a solution set. Indeed, for an arbitrary CH group $K$ and continuous homomorphism $f: G \to K$, the closure of the image $\widebar{f(G)}$ is a compact Hausdorff subgroup of $K$ through which $f$ factors (according to the lemma that follows), and this is a closed subspace of $M(f)^{-1}(u_K)$ in the pullback diagram \begin{displaymath} \itexarray{ M(f)^{-1}(u_K) & \hookrightarrow & I^{Top(G, I)} \\ \downarrow & & \downarrow_{M(f)} \\ K & \underset{u_K}{\hookrightarrow} & I^{Top(K, I)} } \end{displaymath} and therefore $\widebar{f(G)}$ occurs as a closed subspace of $I^{Top(G, I)}$, as claimed. \end{proof} \begin{lemma} \label{}\hypertarget{}{} If $H$ is a topological group and $J \subseteq H$ is a subgroup, then the topological closure $\widebar{J} \subseteq H$ is also a subgroup. (The same is true for any finitary algebraic theory in place of the theory of groups.) \end{lemma} \begin{proof} For $X, Y$ arbitrary topological spaces and subsets $A \subseteq X$, $B \subseteq Y$, it is elementary that $\widebar{A \times B} = \widebar{A} \times \widebar{B}$. Hence for any operation $m: H^n \to H$ that $J$ is closed under, $\widebar{J}^n = \widebar{J^n}$ is contained in $m^{-1}(\widebar{J})$ (by continuity of $m$), so that $m$ restricts to an operation $\widebar{J}^n \to \widebar{J}$ as required. \end{proof} \begin{remark} \label{}\hypertarget{}{} The Bohr compactification admits a more elegant construction if $G$ is a topological \emph{abelian} group: if $S = S^1$ is the unit [[circle]], then $Bohr(G)$ may be taken to be the closure of the image of $G$ under the canonical map $G \to S^{TopAb(G, S)}$. The argument is that it suffices to consider only compact Hausdorff abelian groups $K$, where $K$ embeds as a closed subgroup of $S^{TopAb(K, S)}$ by [[Pontryagin duality]]; using a pullback similar to the above, the argument is easily completed. The description simplifies further if $G$ is a locally compact Hausdorff abelian group; here $Bohr(G)$ is the Pontryagin dual of the discretization of the Pontryagin dual of $G$. \end{remark} \hypertarget{example}{}\subsection*{{Example}}\label{example} A MathOverflow question from 2011 asks whether, for $G$ a compact Hausdorff group, can $\mathbb{Z}$ appear as a quotient of $G$ \emph{considered as an abstract group}? A truly simple answer was \href{http://mathoverflow.net/questions/80966/morphism-from-a-compact-group-to-z#}{given} by Sean Eberhard using the Bohr compactification, as follows. A quotient $p: G \to \mathbb{Z}$ admits a section $i: \mathbb{Z} \to G$ which extends to the Bohr compactification $\widehat{i}: Bohr(\mathbb{Z}) \to G$. The composite $p \widehat{i}: Bohr(\mathbb{Z}) \to \mathbb{Z}$ is still surjective as its restriction along the unit $\mathbb{Z} \to Bohr(\mathbb{Z})$ is the identity. According to the remark above, $Bohr(\mathbb{Z})$ is the Pontryagin dual of the discrete group $S^1 \cong \mathbb{R}_{disc} \oplus \mathbb{Q}/\mathbb{Z}$, so $Bohr(\mathbb{Z}) \cong \mathbb{R}_{disc}' \oplus (\mathbb{Q}/\mathbb{Z})'$. Now the Pontryagin dual of a discrete torsionfree group such as $\mathbb{R}_{disc}$ is divisible (more generally, if $Q$ is an injective module over a commutative ring and $F$ is flat, then $\hom(F, Q)$ is also injective), so the restriction of $p \widehat{i}: Bohr(\mathbb{Z}) \to \mathbb{Z}$ to the summand $\mathbb{R}_{disc}'$ is zero. But the restriction to the other summand $(\mathbb{Q}/\mathbb{Z})' \cong \widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p^\wedge$ is also zero, as the further restriction to $\mathbb{Z}_2^\wedge$ is zero by 3-divisibility, and the restriction to $\prod_{p \neq 2} \mathbb{Z}_p^\wedge$ is zero by 2-divisibility. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[compactification]] \item [[one-point compactification]] \item [[Stone-Cech compactification]] \item [[end compactification]] \item [[Kaluza-Klein compactification]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Bohr_compactification}{Bohr compactification}} \end{itemize} [[!redirects Bohr compactifications]] \end{document}