\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bohr-Sommerfeld leaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{HarmonicOscillator}{Harmonic oscillator}\dotfill \pageref*{HarmonicOscillator} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[geometric quantization]] of a [[symplectic manifold]] $(X, \omega)$, a \emph{Bohr-Sommerfeld leaf} is a [[Lagrangian submanifold]] of $X$ on which not only the [[symplectic form]] $\omega$ vanishes, but on which also a given [[prequantum bundle|prequantization]] $\nabla$ of $\omega$ is trivializable. Therefore given a [[real polarization]] of $(X,\omega)$, hence a [[foliation]] by [[Lagrangian submanifolds]], the Bohr-Sommerfeld leaves form a discrete subset of the [[leaf space]]. The discreteness of this subset is essentially the formal incarnation of ``quantization'' and this is what [[Bohr]] and [[Sommerfeld]] originally considered (in less abstract terms, the archetypical example was the harmonic oscillator as discussed \hyperlink{HarmonicOscillator}{below}). (There is a correction to this picture, given by the fact that a [[quantum states]]/[[semiclassical states]], involve not just Lagrangian submanifolds/Bohr-Sommerfeld leaves, but moreover [[half-densities]] over these. These are to satisfy an additional condition, encoded by the \emph{[[metaplectic correction]]}.) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $(X,\omega)$ be a ([[presymplectic manifold|pre-]])[[symplectic manifold]] and $\nabla$ a [[prequantum bundle|prequatization]], hence a $U(1)$-[[principal connection]] on $X$ with [[curvature]] 2-form $F_\nabla = \omega$. \begin{defn} \label{}\hypertarget{}{} A [[Lagrangian submanifold]] $L \hookrightarrow X$ is a \textbf{Bohr-Sommerfeld leaf} if the restriction $\nabla|_L$ of the [[prequantum connection]] to $L$ is trivializable there, hence if its [[cohomology]] class vanishes in [[ordinary differential cohomology]] \begin{displaymath} [\nabla_L] = 0 \in H^2_{conn}(X) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} For every [[isotropic submanifold]], hence in particular every [[Lagrangian submanifold]], $L \hookrightarrow X$ the restriction $\nabla|_L$ is necessarily already a [[flat connection]]. As discussed there, flat connections are equivalently encoded in the [[holonomy]] of their [[parallel transport]]: a flat connection is trivializable as a connection precisely if its [[holonomy]] is trivial. Therefore a Bohr-Sommerfeld leaf is equivalently a Lagrangian submanifold $L$ such that $\nabla|_L$ has trivial holonomy. In this form the Bohr-Sommerfeld condition is usually stated in the literature. \end{remark} \begin{remark} \label{}\hypertarget{}{} The Bohr-Sommerfeld condition is the natural lift of the [[Lagrangian subspace]]-condition to prequantum geometry: When expressed in terms of [[smooth infinity-groupoid|smooth]] [[moduli stacks]] (see at \emph{[[geometry of physics]]} for background), the ([[presymplectic manifold|pre-]])[[symplectic manifold|symplectic structure]] is equivalently a map \begin{displaymath} \omega \;\colon\; X \to \Omega^2_{cl} \end{displaymath} and a prequantization $\nabla$ is equivalently a lift $\nabla$ in the diagram \begin{displaymath} \itexarray{ && \mathbf{B}U(1)_{conn} \\ & {}^{\mathllap{\nabla}}\nearrow & \downarrow^{\mathrlap{F_{(-)}}} \\ X &\stackrel{\omega}{\to}& \Omega^2_{cl}(X) } \,. \end{displaymath} The condition on an [[isotropic submanifold]] $L \hookrightarrow X$ is that the composite map \begin{displaymath} \omega|_L \;\colon\; \itexarray{ L &\hookrightarrow & X &\stackrel{\omega}{\to}& \Omega^2_{cl} } \end{displaymath} is trivial in $H(L,\Omega^2_{cl}) = \Omega^2_{cl}(L)$ (and $L$ being Lagrangian means that it is maximal with this property). Then $L$ is Bohr-Sommerfeld if moreover the restriction of the prequantum lift \begin{displaymath} \nabla|_L \;\colon\; \itexarray{ L &\hookrightarrow & X &\stackrel{\nabla}{\to}& \mathbf{B}U(1)_{conn} } \end{displaymath} is trivial in $H(L, \mathbf{B}U(1)_{conn}) = H^2_{conn}(X)$. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{HarmonicOscillator}{}\subsubsection*{{Harmonic oscillator}}\label{HarmonicOscillator} For the single 1-dimensional [[Harmonic oscillator]], [[phase space]] is the [[symplectic manifold]] $\mathbb{R}^2$ equipped with the symplectic form \begin{displaymath} \omega = d_{dR} t \wedge d\theta \,, \end{displaymath} where on $\mathbb{R}^2- \mathbb{R}_+$ $(t, \theta)$ are the canonical [[polar coordinates]]. We may choose the trivial [[prequantum line bundle]] with [[connection on a bundle|connection]] given by the globally defined [[differential form|differential 1-form]] \begin{displaymath} \Theta := t \wedge d\theta \,. \end{displaymath} Then a [[polarization]] is given by the [[foliation]] whose [[leaves]] are the [[submanifolds]] of constant $t$. The [[covariant derivative]] along any leaf acts as \begin{displaymath} (\nabla_\Theta \sigma)(t, \theta) = (\frac{\partial}{\partial \theta} \sigma)(t, \theta) - i t \sigma(t, \theta) \,. \end{displaymath} The covariantly sections covariantly constat on a leaf hence must be of the form \begin{displaymath} \sigma(t, \theta) = a(t) \exp( i t \theta) \,. \end{displaymath} For this to be well-defined as a globally defined section on the whole leaf the condition \begin{displaymath} t = 2 \pi k \; \; k \in \mathbb{Z} \end{displaymath} has to hold. Hence the Bohr-Sommerfeld leaves here are the [[circles]] of radius $2 \pi k$ in $\mathbb{R}^2$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Guillemin-Sternberg)} If a [[polarization]] of $X$ is a [[regular fibration]] with [[compact space|compact]] [[leaves]] over a [[simply connected]] base $B$, then the Bohr-Sommerfeld leaves form a discrete subset given by \begin{displaymath} \{F_BS\} = \{ p \in X | (f_1(p), \cdots, f_n(p)) \in \mathbb{Z}^n \} \end{displaymath} where the $\{f_i\}$ are global [[action coordinates]] on the base space $B$. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Sniatycki)} If the leaf space $B$ is [[Hausdorff space|Hausdorff]] and the projection $X \to B$ has [[compact space|compact]] fibers, then the [[dimension]] of the [[space of states (in geometric quantization)|space of quantum states]] is given by the number of Bohr-Sommerfeld leaves. \end{theorem} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item J. niatycki, \emph{Wave functions relative to a real polarization}, Internat. J. Theoret. Phys., 14(4):277--288 (1975) \item J. niatycki, \emph{Geometric Quantization and Quantum Mechanics}, volume 30 of Applied Mathematical Sciences. Springer-Verlag, New York (1980) \item Mark Hamilton, \emph{Locally toric manifolds and singular Bohr-Sommerfeld leaves} \item Eva Miranda, \emph{From action-angle coordinates to geometric quantization and back} (2011) (\href{http://fdis2011.uni-jena.de/Talks/Eva%20Miranda.pdf}{pdf}) \end{itemize} [[!redirects Bohr-Sommerfeld leaves]] [[!redirects BS-leaf]] [[!redirects BS-leaves]] [[!redirects Bohr-Sommerfeld quantization]] \end{document}