\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bondal-Orlov reconstruction theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{bondalorlov_reconstruction_theorem}{}\section*{{Bondal-Orlov reconstruction theorem}}\label{bondalorlov_reconstruction_theorem} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{sketch_of_proof}{Sketch of proof}\dotfill \pageref*{sketch_of_proof} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Thomason and Balmer showed that the [[triangulated categories of sheaves|derived category of coherent sheaves]] on a [[smooth variety]], when considered as a [[monoidal category]] (i.e. with the tensor product) in addition to its [[triangulated category]] structure (i.e. as a [[tensor triangulated category]]), completely determines the variety uniquely; see [[spectrum of a triangulated category]]. However, the derived category still turns out to be an interesting invariant when considered without the monoidal category structure; moreover triangulated equivalences and autoequivalences are also important in relation to the [[homological mirror symmetry]] and similar phenomena. In fact, Bondal and Orlov show how to reconstruct a smooth [[variety]] from its [[triangulated categories of sheaves|derived category of coherent sheaves]] when its [[canonical sheaf]] is ample or anti-ample, using only the graded structure (i.e. the translation functor). \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{theorem} \label{}\hypertarget{}{} \end{theorem} \hypertarget{sketch_of_proof}{}\subsection*{{Sketch of proof}}\label{sketch_of_proof} The idea of the proof is to characterize ``cohomologically'' the closed points, invertible sheaves, and Zariski topology. The main tool we use is the [[Serre functor]]. Due to [[Grothendieck-Serre duality]], both $D^b(X)$ and $D^b(Y)$ have Serre functors $S_X = (\cdot \otimes \omega_X)[n]$ and $S_Y = (\cdot \otimes \omega_Y)[m]$, $n$ and $m$ being the dimensions of $X$ and $Y$ respectively. For simplicity assume $\omega_X$ is ample; the anti-ample case is analogous. \textbf{Step 1.} First we characterize the closed points of $X$ and $Y$. \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[linear category|k-linear]] [[graded category]]. A \textbf{point object} of $\mathcal{C}$ is an object $P$ satisfying \begin{itemize}% \item (PO-1) $S(P) \simeq P[n]$, \item (PO-2) $\Hom^i(P, P) = 0$ for $i \lt 0$, \item (PO-3) $k(P) := \Hom(P, P)$ is a field. \end{itemize} \end{defn} It is clear that the [[skyscraper sheaf]] $\mathcal{O}_x = \mathrm{Sky}_x(k(x))$ of the [[residue field]] at any closed point $x \in X$ is a point object of $D^b(X)$, as is any translation $\mathcal{O}_x[r]$. In fact, when we impose the ampleness condition on $\omega_X$, it turns out that all point objects are of this form. \begin{prop} \label{}\hypertarget{}{} If $\omega_X$ is ample, then a complex $\mathcal{F}^\bullet$ in $D^b(X)$ is a point object iff $\mathcal{F}^\bullet \simeq \mathcal{O}_x[r]$ for some closed point $x \in X$, $r \in \mathbb{Z}$. \end{prop} In fact, even though we don't know that $\omega_Y$ is also ample, we get the same result for $D^b(Y)$. Let $G$ be the inverse equivalence to $F$ and note that $F$ and $G$ preserve point objects. Suppose there was a point object $P$ in $D^b(Y)$ not isomorphic to any $\mathcal{O}_y[s]$, and note $G(P) \simeq \mathcal{O}_{x_0}[r]$ for some closed $x_0$. Now for any $y \in Y$, $\Hom(P, \mathcal{O}_y) = \Hom(G(P), G(\mathcal{O}_y)) = \Hom(\mathcal{O}_{x_0}[r], \mathcal{O}_x[r']) = 0$ since $x_0 \ne x$. But $\{\mathcal{O}_y : y \in Y\}$ form a [[spanning class]] of $D^b(Y)$ which implies that $P = 0$. \textbf{Step 2.} Next we characterize the invertible sheaves on both varieties. \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a $k$-linear graded category. An \textbf{invertible object} of $\mathcal{C}$ is an object $L$ satisfying for some $s \in \mathbb{Z}$ \begin{itemize}% \item (IO-1) $\Hom^s(L, P) = k(P)$ for all point objects $P$, \item (IO-2) $\Hom^i(L, P) = 0$ for $i \ne s$. \end{itemize} \end{defn} \begin{prop} \label{}\hypertarget{}{} If all point objects of $D^b(X)$, for a smooth projective variety $X$, are translations of skyscraper sheaves of closed points, then all invertible objects of $D^b(X)$ are translations of invertible sheaves on $X$. \end{prop} This means that the invertible objects of both $D^b(X)$ and $D^b(Y)$ are translations of invertible sheaves, by step 1. \textbf{Step 3.} Now we establish a bijection between the sets of points of the varieties. Since $\mathcal{O}_X$ is an invertible object, we can assume without loss of generality that $F(\mathcal{O}_X)$ is isomorphic to some invertible sheaf $\mathcal{L}_0$ on $Y$. For any $x \in X$, \begin{displaymath} k(x) = \Hom(\mathcal{O}_X, \mathcal{O}_x) = \Hom(\mathcal{L}_0, \mathcal{O}_y[s]) \end{displaymath} for some $y \in Y$, which implies $s=0$ and $F(\mathcal{O}_x) \simeq \mathcal{O}_y$, $k(x) \simeq k(y)$. We get a bijection of sets $\phi : X \to Y$ by mapping $x \mapsto y$. \textbf{Step 4.} Now we can get an isomorphism of the [[canonical ring]]s of the varieties. Assume WLOG $F(\mathcal{O}_X) \simeq \mathcal{O}_Y$. Note that $S_X^k(\mathcal{O}_X)[-nk] \simeq \omega_X^{nk}$ for any $k$. By commutativity of $F$ with the Serre functor, $F(\omega_X^{nk}) = S_Y^k(\mathcal{O}_Y)[-nk] = \omega_Y^{nk}$. Therefore \begin{displaymath} H^0(X, \omega_X^{nk}) = \Hom(\mathcal{O}_X, \omega_X^{nk}) = \Hom(\mathcal{O}_Y, \otimes_Y^{nk}) = H^0(Y, \omega_Y^{nk}) \end{displaymath} and $\bigoplus_k H^0(X, \omega_X^{nk}) \simeq \bigoplus_k H^0(Y, \omega_Y^{nk})$, that is we have an isomorphism of the canonical rings $A(X)$ and $A(Y)$. \textbf{Step 5.} Since $X = \mathrm{Proj}(A(X))$ iff $\omega_X$ is ample, it remains therefore only to show that $\omega_Y$ is ample. To do this we characterize the Zariski topology ``cohomologically''. For any invertible sheaf $\mathcal{L}$ on $X$, $\alpha \in \Hom(\mathcal{O}_X, \mathcal{L})$, and $x \in X$, let $\alpha_X^* : \Hom(\mathcal{L}, \mathcal{O}_x) \to \Hom(\mathcal{O}_X, \mathcal{O}_x)$ be the induced map that takes $f$ to $f \circ \alpha$, and define the subset $U_\alpha = \{ x \in X : \alpha_x^* \ne 0 \} \subset X$. Now $\omega_X$ being ample is equivalent to the subcollection $\{ U_\alpha : \alpha \in \Hom(\mathcal{O}_X, \omega_X^m), m \in \mathbb{Z} \}$ forming a basis of the Zariski topology on $X$. Now the equivalence $F$ maps any $\mathcal{O}_X \stackrel{\alpha}{\to} \mathcal{L} \to \mathcal{O}_x$ to \begin{displaymath} \mathcal{O}_Y \stackrel{F(\alpha)}{\to} F(\mathcal{L}) \to \mathcal{O}_{\phi(x)}[s]. \end{displaymath} $F(\alpha)$ corresponds bijectively to some $\beta \in \Hom(\mathcal{O}_Y, \omega_Y^m)$ and in fact our bijection $f : X \to Y$ becomes a homeomorphism mapping $U_\alpha$ to $V_{F(\alpha)}$. It follows that $\{ V_\beta : \beta \in \Hom(\mathcal{O}_Y, \omega_Y^m), m \in \mathbb{Z} \}$ forms a basis of the Zariski topology on $Y$, which implies $\omega_Y$ is ample. \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} \begin{itemize}% \item [[triangulated categories of sheaves]] \item [[2-ring]] \item [[spectrum of a triangulated category]] \item [[spectrum of an abelian category]] \item [[Tannaka duality for geometric stacks]] \item [[higher geometry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original paper: \begin{itemize}% \item [[Aleksei Bondal]], [[Dmitri Orlov]], \emph{Reconstruction of a variety from the derived category and groups of autoequivalences}, Compositio Mathematica \textbf{125} (03), 327-344 \href{http://dx.doi.org/10.1023/A:1002470302976}{doi}, \href{http://www.mi.ras.ru/~orlov/papers/Compositio2001.pdf}{pdf}\emph{\href{http://www.mi.ras.ru/~orlov/papers/Compositio2001.pdf}{Reconstruction of a variety from the derived category and groups of autoequivalences}}, Compositio Mathematica 125 (03), 327-344. \end{itemize} A nice exposition of the proof with more details can be found in section 3.1 of the course notes of [[Igor Dolgachev]] on [[derived categories]]: \begin{itemize}% \item [[Igor Dolgachev]], \href{http://www.math.lsa.umich.edu/~idolga/derived9.pdf}{\emph{Derived categories}}. \end{itemize} The theorem is also discussed in: \begin{itemize}% \item [[Raphaƫl Rouquier]], \emph{\href{http://arxiv.org/abs/math/0503548}{Cat\'e{}gories d\'e{}riv\'e{}es et g\'e{}om\'e{}trie birationnelle}}, S\'e{}minaire Bourbaki, no 947, March 2005. \item [[Daniel Huybrechts]], \emph{Fourier-Mukai transforms in algebraic geometry}, 2006. \end{itemize} \end{document}