\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Borel's theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statements}{Statements}\dotfill \pageref*{statements} \linebreak \noindent\hyperlink{proof}{Proof}\dotfill \pageref*{proof} \linebreak \noindent\hyperlink{related_theorems}{Related theorems}\dotfill \pageref*{related_theorems} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Borel's Theorem} (also called \emph{Borel's Lemma}) says that every [[power series]] is the [[Taylor series]] of some [[smooth function]]. In other words: for every collection of prescribed [[partial derivatives]] at some point, there is a smooth function having these as its actual derivatives. \hypertarget{statements}{}\subsection*{{Statements}}\label{statements} \begin{theorem} \label{basic}\hypertarget{basic}{} The canonical map from the ring of germs of $C^\infty$ function at $0 \in \mathbb{R}^n$ to the ring of formal power series obtained by taking the Taylor series at $0$ is surjective. \end{theorem} There are many extensions and variants. For $\mathbb{R}^{n+m}$ a [[Cartesian space]] of [[dimension]] $n+m \in \mathbb{N}$, write $C^\infty(\mathbb{R}^{n+m})$ for the $\mathbb{R}$-[[associative algebra|algebra]] of [[smooth function]]s with values in $\mathbb{R}$. Write $m^\infty_{\mathbb{R}^n \times \{0\}} \subset C^\infty(\mathbb{R}^{n+m})$ for the ideal of functions all whose [[partial derivatives]] along $\mathbb{R}^m$ vanish. \begin{theorem} \label{general}\hypertarget{general}{} Forming the [[Taylor series]] constitutes an [[isomorphism]] \begin{displaymath} C^\infty(\mathbb{R}^{n+m})/m^\infty_{\mathbb{R}^n \times \{0\}} \stackrel{\simeq}{\longrightarrow} C^\infty(\mathbb{R}^n) [ [ Y_1, \cdots, Y_m] ] \end{displaymath} between smooth functions modulo those whose derivatives along $\mathbb{R}^m$ vanish and the ring of [[power series]] in $m$-variables over $C^\infty(\mathbb{R}^n)$. \end{theorem} This appears for instance as (\hyperlink{MoerdijkReyes}{Moerdijk-Reyes, theorem I.1.3}). \hypertarget{proof}{}\subsection*{{Proof}}\label{proof} There is a full proof in Moerdijk--Reyes, cited above. Here we prove Theorem \ref{basic} to indicate the method; the general version is not substantially different. (This is based on the proof in \href{https://en.wikipedia.org/wiki/Borel%27s_lemma}{the English Wikipedia article} at the time of writing, but with more details.) \begin{proof} A real [[power series]] at $0$ is given simply by an [[infinite sequence]] $c = (c_n)_{n\geq{0}}$ of [[real numbers]]. Given such a sequence, we would ideally use \begin{displaymath} f(x) = \sum_{n=0}^\infty c_n x^n , \end{displaymath} but this is only correct if the sum [[convergence|converges]] on at least some [[neighbourhood]] of $0$ (in other words if the power series has a positive [[radius of convergence]]). To ensure this, let $\psi$ be a [[smooth function|smooth]] [[bump function]] chosen so that $\psi(x) = 1$ for ${|x|} \leq 1$ and $\psi(x) = 0$ for ${|x|} \geq 2$. (For example, $\psi(x) = \frac{\phi(x + 2)} {\phi(x + 2) + \phi(-x - 1)} \frac{\phi(-x + 2)} {\phi(-x + 2) + \phi(x - 1)}$, where $\phi(x)$ is $\exp(-1/x)$ when $x \gt 0$ and otherwise vanishes.) Next, choose an infinite sequence $H = (H_n)_{n\geq{1}}$ of positive finite numbers: \begin{displaymath} H_n = \max_{0\leq{k}\lt{n}} \, \max_{0\leq{i}\leq{k}} \, \root{n-k}{ 2^{2n-i} \, (k + 1) \, n^{\underline{k}} \, k^{\underline{i}} \, i!^{-1} \, {|c_n|} \, {\|\psi^{(k-i)}\|_\infty} } \end{displaymath} (where $m^{\underline{j}}$ is the [[falling power]] $\prod_{0\leq{h}\lt{j}} (m - h)$, including the special case $m! = m^{\underline{m}}$); also, let $H_0 = 0$ (the [[bottom element]] of $[0,\infty]$, since $0 \leq k \lt 0$ never occurs). Finally, define \begin{displaymath} f(x) = \sum_{n=0}^\infty c_n \psi(H_n x) x^n . \end{displaymath} If things go well, the [[derivatives]] of $f$ will be \begin{displaymath} f^{(k)}(x) = \sum_{n=k}^\infty \sum_{i=0}^k i!^{-1} k^{\underline{i}} n^{\underline{i}} c_n H_n^{k-i} \psi^{(k-i)}(H_n x) x^{n-i} , \end{displaymath} and I claim that this is so. Since $\psi^{(k-i)}(H_n x) = 0$ for ${|x|} \geq 2/H_n$, we have \begin{displaymath} \begin{aligned} {\|f^{(k)}\|_\infty} & \leq \sum_{n=k}^\infty \sum_{i=0}^k i!^{-1} k^{\underline{i}} n^{\underline{i}} {|c_n|} H_n^{k-i} {\|\psi^{(k-i)}\|_\infty} (2/H_n)^{n-i} \\ & \leq \sum_{n=k}^\infty (k + 1) \max_{0\leq{i}\leq{k}} i!^{-1} k^{\underline{i}} n^{\underline{i}} {|c_n|} {\|\psi^{(k-i)}\|_\infty} 2^{n-i}/H_n^{n-k} \\ & \leq (k + 1) \max_{0\leq{i}\leq{k}} i!^{-1} k^{\underline{i}} k^{\underline{i}} {|c_n|} {\|\psi^{(k-i)}\|_\infty} 2^{k-i} + \sum_{n=k+1}^\infty 2^{-n} \end{aligned} \,, \end{displaymath} which is finite. This proves [[uniform convergence]] of each claimed derivative (although not equiconvergence of all at once), and so each series not only converges but also may be antidifferentiated term by term, proving that $f^{(k)}$ is as claimed. Finally (because $\psi^{(m)}(0) = 0$ for $m \gt 0$ but $\psi(0) = 1$, and the same goes for $0^m$), \begin{displaymath} f^{(k)}(0) = \sum_{n=k}^\infty \sum_{i=0}^k i!^{-1} k^{\underline{i}} n^{\underline{i}} c_n H_n^{k-i} \psi^{(k-i)}(0) 0^{n-i} = k!^{-1} k! k! c_k H_k^0 \psi(0) 0^0 = k! c_k , \end{displaymath} making $c_k$ the $k$th coefficient of the Taylor series of $f$ at $0$, as desired. \end{proof} \hypertarget{related_theorems}{}\subsection*{{Related theorems}}\label{related_theorems} \begin{itemize}% \item the [[Hadamard lemma]] \item the [[Tietze extension theorem]] \item the [[Whitney extension theorem]] \item the [[Steenrod-Wockel approximation theorem]] \item [[embedding of smooth manifolds into formal duals of R-algebras]] \item [[smooth Serre-Swan theorem]] \item [[derivations of smooth functions are vector fields]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[asymptotic expansion]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original reference is \begin{itemize}% \item [[Émile Borel]], \emph{Sur quelques points de la th\'e{}orie des fonctions}, Annales scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, S\'e{}r. 3, 12 (1895), p. 9--55 \href{http://www.numdam.org/item?id=ASENS_1895_3_12__9_0}{numdam} \end{itemize} It had been actually proved by [[Guiseppe Peano]] before Borel \begin{itemize}% \item \'A{}d\'a{}m Besenyei, \emph{Peano's unnoticed proof of Borel's theorem} (\href{http://www.cs.elte.hu/~badam/publications/borel.pdf}{pdf}) \end{itemize} Textbook discussion includes \begin{itemize}% \item [[Ieke Moerdijk]], [[Gonzalo Reyes]], chapter I of \emph{[[Models for Smooth Infinitesimal Analysis]]} \end{itemize} A generalization to [[Banach spaces]] is in \begin{itemize}% \item John C. Wells, \emph{Differentiable functions on Banach spaces with Lipschitz derivatives}, J. Differential Geom. 8:1 (1973), 135-152 \href{http://projecteuclid.org/euclid.jdg/1214431488}{euclid} \end{itemize} and is cited (along with extensive discussion and (counter)examples) also as (Ch.III) 15.4 in \begin{itemize}% \item [[Andreas Kriegl]], [[Peter Michor]], \emph{[[The Convenient Setting of Global Analysis]]}, Mathematical Surveys and Monographs, 53 AMS (1997) \href{http://www.mat.univie.ac.at/~michor/apbookh-ams.pdf}{pdf} \end{itemize} [[!redirects Borel's theorem]] [[!redirects Borel's theorem]] [[!redirects Borel/`s theorem]] [[!redirects Borel's theorem]] [[!redirects Borel's Theorem]] [[!redirects Borel's Theorem]] [[!redirects Borel/'s Theorem]] [[!redirects Borel's Theorem]] [[!redirects Borel theorem]] [[!redirects Borel Theorem]] [[!redirects Borel's theorem on power series]] [[!redirects Borel's lemma]] [[!redirects Borel's lemma]] [[!redirects Borel/`s lemma]] [[!redirects Borel's lemma]] [[!redirects Borel's Lemma]] [[!redirects Borel's Lemma]] [[!redirects Borel/'s Lemma]] [[!redirects Borel's Lemma]] [[!redirects Borel lemma]] [[!redirects Borel Lemma]] \end{document}