\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Borel model structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_slicing_over_}{Relation to slicing over $\bar W G$}\dotfill \pageref*{relation_to_slicing_over_} \linebreak \noindent\hyperlink{cofibrant_replacement_and_homotopy_quotientsfixed_points}{Cofibrant replacement and homotopy quotients/fixed points}\dotfill \pageref*{cofibrant_replacement_and_homotopy_quotientsfixed_points} \linebreak \noindent\hyperlink{relation_to_the_fine_model_structure_of_equivariant_homotopy_theory}{Relation to the fine model structure of equivariant homotopy theory}\dotfill \pageref*{relation_to_the_fine_model_structure_of_equivariant_homotopy_theory} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[simplicial group]] $G_\bullet$, the \emph{Borel model structure} is a [[model category]] structure on the [[category]] of [[simplicial sets]] equipped with $G$-[[action]] which presents the [[(∞,1)-category]] of [[∞-actions]] of the [[∞-group]] (see there) presented by $G$. In the context of [[equivariant homotopy theory]] this is also called the ``coarse model structure'' (e.g. \hyperlink{Guillou}{Guillou, section 5}), since it is not equivalent to the homotopy theory of [[G-spaces]] which enters [[Elmendorf's theorem]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Writing $\mathbf{B}G_\bullet$ for the one-object [[sSet-enriched category]] ([[simplicial groupoid]]) whose [[hom-object]] is $G_\bullet$. Write $sSet^{\mathbf{B}G_\bullet}$ for the corresponding [[sSet]]-[[enriched functor category]]. This carries the projective global [[model structure on functors]] ([[model structure on simplicial presheaves]]) $(sSet^{\mathbf{B}G_\bullet})_{proj}$. This is the Borel model structure (\hyperlink{DDK80}{DDK 80}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_slicing_over_}{}\subsubsection*{{Relation to slicing over $\bar W G$}}\label{relation_to_slicing_over_} The central theorem of (\hyperlink{DDK80}{DDK 80}) is that the Borel model structure is [[Quillen equivalence|Quillen euqivalent]] to the [[slice model structure]] of the standard [[model structure on simplicial sets]] over the model $\bar W G_\bullet$ (see at \emph{[[simplicial group]]} for notation and details) for the [[delooping]] of $G_\bullet$. This kind of relation is discussed in more detail at \emph{[[∞-action]]}. \hypertarget{cofibrant_replacement_and_homotopy_quotientsfixed_points}{}\subsubsection*{{Cofibrant replacement and homotopy quotients/fixed points}}\label{cofibrant_replacement_and_homotopy_quotientsfixed_points} The cofibrations $i \colon X \to Y$ in $(sSet^{\mathbf{B}G_\bullet})_{proj}$ are precisely those maps such that \begin{enumerate}% \item the underlying homomorphism of [[simplicial sets]] is a [[monomorphism]]; \item the $G_\bullet$-action is relatively [[free action]], i.e. [[free action|free]] on all [[simplices]] not in the [[image]] of $i$. \end{enumerate} This is part of (\hyperlink{DDK80}{DDK 80, proposition 2.2. ii)}). Also (\hyperlink{Guillou}{Guillou, prop. 5.3}). In particular this means that an object is cofibrant if the $G_\bullet$-[[action]] on it is [[free action|free]]. Hence cofibrant replacement is in particular given by forming the product with the model $W G_\bullet$ for the total space of the [[universal principal bundle]] over $G_\bullet$ (see at \emph{[[simplicial group]]} for notation and more details). It follows that for $X,A\in (sSet^{\mathbf{B}G_\bullet})_{proj}$ the [[derived hom space]] \begin{displaymath} R Hom_G(X,A) \end{displaymath} models the $G$-[[equivariant cohomology]] of $X$ with [[coefficients]] in $A$. In particular,if $A$ is fibrant (the underlying simplicial set is a [[Kan complex]]) then \begin{enumerate}% \item if the $G_\bullet$-action on $A$ is trivial, then \begin{displaymath} R Hom_G(X,A) \simeq Hom_G(W G \times X , A) \simeq Hom(W G \times_G X, A) \end{displaymath} is equivalently maps of [[simplicial sets]] out of the [[Borel construction]] on $X$; \item if $X= \ast$ is the point then \begin{displaymath} R Hom_G(X,A) \simeq Hom_G(W G, A) \simeq Hom(\bar W G , A) \simeq A^{h G} \end{displaymath} is the [[homotopy fixed points]] of $A$. \end{enumerate} \hypertarget{relation_to_the_fine_model_structure_of_equivariant_homotopy_theory}{}\subsubsection*{{Relation to the fine model structure of equivariant homotopy theory}}\label{relation_to_the_fine_model_structure_of_equivariant_homotopy_theory} The identity functor [[Quillen adjunction]] between the Borel model structure and [[equivariant homotopy theory]] (\hyperlink{Guillou}{Guillou, section 5}). The left adjoint is \begin{displaymath} L = id \;\colon\; G_\bullet Act_{coarse} \longrightarrow G_\bullet Act_{fine} \end{displaymath} from the Borel model structure to the genuine [[equivariant homotopy theory]]. Because: First of all, by (\hyperlink{Guillou}{Guillou, theorem 3.12, example 4.2}) $sSet^{\mathbf{B}G_\bullet}$ does carry a fine model structure. By (\hyperlink{Guillou}{Guillou, last line of page 3}) the fibrations and weak equivalences here are those maps which are ordinary fibrations and weak equivalences, respectively, on $H$-[[fixed point]] simplicial sets, for all subgroups $H$. This includes in particular the trivial subgroup and hence the identity functor \begin{displaymath} R = id \;\colon\; G_\bullet Act_{fine} \longrightarrow G_\bullet Act_{coarse} \end{displaymath} is right Quillen. \hypertarget{references}{}\subsection*{{References}}\label{references} The model structure, the characterization of its cofibrations, and its equivalence to the [[slice model structure]] of $sSet$ over $\bar W G$ is due to \begin{itemize}% \item E. Dror, [[William Dwyer]], and [[Daniel Kan]], \emph{Equivariant maps which are self homotopy equivalences}, Proc. Amer. Math. Soc. 80 (1980), no. 4, 670--672 (\href{http://www.jstor.org/stable/2043448}{JSTOR}) \end{itemize} This is mentioned for instance as exercise 4.2in \begin{itemize}% \item [[William Dwyer]], \emph{Homotopy theory of classifying spaces}, Lecture notes Copenhagen (June, 2008) \href{http://www.math.ku.dk/~jg/homotopical2008/Dwyer.CopenhagenNotes.pdf}{pdf} \end{itemize} Discussion in relation to the ``fine'' model structure of [[equivariant homotopy theory]] which appears in [[Elmendorf's theorem]] is in \begin{itemize}% \item [[Bert Guillou]], \emph{A short note on models for equivariant homotopy theory} (\href{http://www.math.uiuc.edu/~bertg/EquivModels.pdf}{pdf}) \end{itemize} Discussion with the model of [[∞-groups]] by [[simplicial groups]] replaced by groupal [[Segal spaces]] is in \begin{itemize}% \item [[Matan Prasma]], \emph{Segal Group Actions} (\href{http://arxiv.org/abs/1311.4749}{arXiv:1311.4749}) \end{itemize} Discussion of a [[global equivariant homotopy theory|globalized]] model structure for actions of all simplicial groups is in \begin{itemize}% \item [[Yonatan Harpaz]], [[Matan Prasma]], section 6.2 of \emph{The Grothendieck construction for model categories} (\href{http://arxiv.org/abs/1404.1852}{arXiv:1404.1852}) \end{itemize} \end{document}