\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Borger's absolute geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Motivation}{Motivation}\dotfill \pageref*{Motivation} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} One proposal for a precise realization of the idea of ``absolute'' [[arithmetic geometry]] over [[F1|Spec(F1)]] is \emph{Borger's absolute geometry} (\hyperlink{Borger09}{Borger 09}). Here the structure of a [[Lambda-ring]] on a ring $R$, hence on its [[spectrum of a commutative ring|spectrum]] $Spec(R) \to Spec(\mathbb{Z})$, is interpreted as a collection of lifts of all [[Frobenius morphisms]] and hence as [[descent]] data for descent to $Spec(\mathbb{F}_1)$ (which is defined thereby). This definition yields an [[essential geometric morphism]] of [[gros topos|gros]] [[etale toposes]] \begin{displaymath} Et(Spec(\mathbb{Z})) \stackrel{\overset{}{\longrightarrow}}{\stackrel{\overset{}{\longleftarrow}}{\underset{}{\longrightarrow}}} Et(Spec(\mathbb{F}_1)) \,, \end{displaymath} where on the right the notation is just suggestive, the [[topos]] is a suitable one over [[Lambda-rings]]. Here the middle [[inverse image]] is the [[forgetful functor]] which forgets the Lambda structure, and its [[right adjoint]] [[direct image]] is given by the [[ring of Witt vectors]] construction and may be thought of as producing [[arithmetic jet spaces]]. In this sense the [[adjoint triple]] here would be directly analogous to the [[base change]] along the [[unit of a monad|unit]] of an [[infinitesimal shape modality]] whose induced [[comonad]] is the [[jet comonad]]. This proposal seems to subsume many aspects of other existing proposals (see e.g. \hyperlink{LeBruyn13}{Le Bruyn 13}) and stands out as yielding an ``absolute [[base topos]]'' $Et(Spec(\mathbb{F}_1))$ which is rich and genuinely interesting in its own right. \hypertarget{Motivation}{}\subsection*{{Motivation}}\label{Motivation} The following is an attempt to motivate or make intuitively clear why lifts of [[Frobenius morphisms]] may be related to ``abolute geometry'' over [[F1]]. First of all, the [[function field analogy]] says that $\mathbb{Z}$ is analogous to the [[polynomial ring]] $k[z]$ over a finite field $k$, as well as to the ring $\mathcal{O}_{\mathbb{C}}$ of ([[entire function|entire]]) [[holomorphic functions]] on the [[complex plane]]. To make this analogy more concrete, notice that one characteristic property of the rings $k[z]$ and $\mathcal{O}_{\mathbb{C}}$, witnessing their affine-ness in one variable, is that they carry a canonical [[derivation]], namely $\frac{\partial}{\partial z}$, and that the [[ground field]] is recovered as the [[quotient]] by the [[ideal]] generated by $z$. More to the point, for each [[maximal ideal]] $(z-x)$ there is the first order translation operator $\mathrm{id} + (z-x)\frac{\partial}{\partial (z-x)}$ and the quotient by its difference from the identity is the [[residue field]] of functions at the point $x$. Therefore if $\mathbb{Z}$ is analogous to $k[z]$ and to $\mathcal{O}_{\mathbb{C}}$, then it ought to admit analogous operators, one for each of its [[maximal ideals]] $(p)$ given by a [[prime number]] $p \in \mathbb{Z}$. Remarkably, such a collection of operations indeed exists on $\mathbb{Z}$: the $p$-power operations $(-)^p : \mathbb{Z} \to \mathbb{Z}$ (acting on the underlying set of $\mathbb{Z}$) which by [[Fermat's little theorem]] is indeed of the above form \begin{displaymath} (-)^p : n \mapsto n^p = n + p \cdot\partial_p n \,. \end{displaymath} Here the expression $\partial_p n \in \mathbb{Z}$ is uniquely defined by this equation, it is given by the [[Fermat quotient]] operation \begin{displaymath} \partial_p : n \mapsto \partial_p n \coloneqq \frac{n^p - n}{p} \,. \end{displaymath} Hence by [[analogy]] it makes sense to think of $\partial_p : \mathbb{Z} \to \mathbb{Z}$ as being like a [[derivation]] on $\mathrm{Spec}(\mathbb{Z})$ -- it is called a \emph{[[p-derivation]]}. This is the beginning of the theory of \emph{[[arithmetic differential equations]]} (\hyperlink{Buium05}{Buium 05}). More generally, a $k[z]$-algebra $A$ is to be thought of as a space $\mathrm{Spec}(A)$ over $\mathrm{Spec}(k[z])$. The canonical [[derivation]] on the latter canonically lifts to the former, and is given by the same formula: $\mathrm{id} + (z-x)\frac{\partial}{\partial (z-x)}$. This exhibits the fact that $\mathrm{Spec}(A) \to \mathrm{Spec}(k[z])$ is simply a [[product]] of $\mathrm{Spec}(A/(z)) \to \mathrm{Spec}(k)$ with the [[affine line]] $\mathbb{A}_k = \mathrm{Spec}(k[z])$ over the [[ground field]] $k$. Analogously, any [[commutative ring]] $R$ is to be thought of as a space $\mathrm{Spec}(R)$ over $\mathrm{Spec}(\mathbb{Z})$ and the above arithmetic translation operator canonically lifts to $\mathrm{Spec}(R)$, by the same formula: $a \mapsto a^p$. However, inspecting this one finds that not only is the derivation-like part lifted non-trivially, but also the identity-part is lifted in general to some [[homomorphism]]: in particular if $R$ is an $\mathbb{F}_p$-[[associative algebra|algebra]], so that $\mathrm{Spec}(R)$ is [[support|supported]] over the point $\mathrm{Spec}(\mathbb{F}_p)$ in $\mathrm{Spec}(\mathbb{Z})$, then the standard fact that in [[positive characteristic|characteristic]] $p$ the $p$-power operation is a ring homomorphism now means that the derivation-like action vanishes here, as expected from the analogy, but that a pure homomorphism part covering the identity remains -- the [[Frobenius homomorphism]] $\mathrm{Frob}_p$. If by some abuse of notation we allow ourselves to write [[Isbell duality|formally dual]] morphisms for maps between rings that are not necessarily homomorphisms, then this situation is, possibly, usefully visualized as follows. \begin{displaymath} \itexarray{ \mathrm{Spec}(R) &\stackrel{\mathrm{Frob}_p + 0}{\longrightarrow} & \mathrm{Spec}(R) \\ \downarrow && \downarrow \\ \mathrm{Spec}(\mathbb{F}_p) &\stackrel{\mathrm{id} + 0}{\longrightarrow} & \mathrm{Spec}(\mathbb{F}_p) \\ \downarrow && \downarrow \\ \mathrm{Spec}(\mathbb{Z}) &\stackrel{\mathrm{id} + p \cdot \partial_p}{\longrightarrow} & \mathrm{Spec}(\mathbb{Z}) } \end{displaymath} This suggests that we are to think of the operation $(-)^p = \mathrm{id} + p \cdot \partial_p$ on $\mathrm{Spec}(\mathbb{Z})$ not just as analogous to the identity transformation plus a derivation, but as analogous to the sum of a general finite transformation plus a derivation. In other words, a lift of this operation to some $\mathrm{Spec}(R)$ is to be a choice of ring homomorphism $\Phi : R \to R$ (a ``finite translation'') in addition to a derivation-like operation $\partial_p : R \to R$ (the ``infinitesimal translation''), such that \begin{displaymath} (-)^p = \Phi + p \cdot\partial_p \,. \end{displaymath} As before, when $p$ is invertible in $R$, hence away from the fiber over $\mathrm{Spec}(\mathbb{F}_p)$, then $\partial_p$ is uniquely fixed by this equation once $\Phi$ is chosen, and hence it is $\Phi$ alone which is to be chosen on $R$. A pair $(R,\Phi)$ satisfying the above equation is equivalently a ``$\Lambda_p$-ring'' (see at \emph{[[Lambda ring]]}). Or rather, by the analogy we are to lift the whole collection of operators $\mathrm{id} + p \cdot\partial_p$ for all primes $p$ and hence are to ask that $\Phi$ satisfies the above equation for all $p$ and hence defines for all primes $p$ the derivation-like operator (function on the underlying set of $R$) \begin{displaymath} \partial^\Phi_p \coloneqq \frac{(-)^p - \Phi}{p} : R \to R \,. \end{displaymath} This is the general form of an ``[[arithmetic jet space|arithmetic differential operator]]'', see for instance the first pages of (\hyperlink{Buium13}{Buium 13}) for review. In terms of the abuse of notation already employed previously, this situation is usefully visualized as follows. \begin{displaymath} \itexarray{ \mathrm{Spec}(R) &\stackrel{\Phi + p\cdot \partial^{\Phi}_p}{\longrightarrow} & \mathrm{Spec}(R) \\ \downarrow && \downarrow \\ \mathrm{Spec}(\mathbb{Z}) &\stackrel{\mathrm{id} + p\cdot \partial_p}{\longrightarrow} & \mathrm{Spec}(\mathbb{Z}) } \end{displaymath} A ring $R$ equipped with such an endomorphism $\Phi$ is equivalently a [[Lambda ring]] (an insight highlighted by [[James Borger]]). In this way a $\Lambda$-ring structure on a commutative ring $R$ is the [[arithmetic geometry]]-analog of exhibiting $\mathrm{Spec}(R) \to \mathrm{Spec}(\mathbb{Z})$ as being like a product by the [[affine line]] over the non-existent field $\mathbb{F}_1$ of a map to ``$\mathrm{Spec}(\mathbb{F}_1)$''. This should be one way to think of how $\Lambda$-rings embody ``geometry over $\mathbb{F}_1$'' as proposed in (\hyperlink{Borger09}{Borger 09}). Finally notice that the refinement of the $(-)^p$-operation from [[arithmetic geometry]] to [[E-infinity arithmetic geometry]] is given by the [[power operations]] in [[multiplicative cohomology theory]] (\hyperlink{Lurie}{Lurie, remark 2.2.9}) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{quote}% under construction \end{quote} Write [[CRing]] for the [[category]] of (finitely generated) [[commutative rings]] and $\Lambda Ring$ for that of [[Lambda-rings]]. By the discussion at \emph{\href{Lambda-ring#FreeAndCofreeLambdaRings}{here}} the [[forgetful functor]] $U \;\colon\; \Lambda Ring \longrightarrow CRing$ from [[Lambda-rings]] to [[commutative rings]] has \begin{itemize}% \item a [[left adjoint]], given by forming the ring $Symm$ of [[symmetric functions]]; \item a [[right adjoint]] given by forming the [[ring of Witt vectors]] $W$. \end{itemize} \begin{displaymath} (Symm \dashv U \dashv Witt) \;\colon\; \Lambda Ring \stackrel{\overset{Symm}{\leftarrow}}{\stackrel{\overset{U}{\longrightarrow}}{\overset{Witt}{\leftarrow}}} CRing \,. \end{displaymath} Hence \begin{itemize}% \item [[rings of Witt vectors]] are the \emph{[[co-free functors|co-free]] Lambda-rings;} \item rings of [[symmetric functions]] are the [[free construction|free]] Lambda-rings. \end{itemize} Regarding $Ring^{op}$ as a [[site]] for [[arithmetic geometry]], the order of the adjoints is reversed by forming [[opposite categories]] \begin{displaymath} (Witt \dashv U \dashv Symm) \;\colon\; CRing^{op} \stackrel{\overset{Witt}{\longrightarrow}}{ \stackrel{\overset{U}{\longleftarrow}}{ \overset{Symm}{\longrightarrow} } } \Lambda Ring^{op} \,. \end{displaymath} Write $Spec(\mathbb{Z})_{et}$ for $CRing^{op}$ equipped with the [[etale topology]]. Hence \begin{displaymath} Et(Spec(\mathbb{Z})) \coloneqq Sh(Spec(\mathbb{Z})_{et}) \end{displaymath} is the [[gros topos|gros]] [[etale topos]] of [[arithmetic geometry]]. Put a compatible [[Grothendieck topology]] on $\Lambda Ring^{op}$(\ldots{}) and write the resulting [[site]] $Spec(\mathbb{F}_1)_{et}$. In analogy we write \begin{displaymath} Et(Spec(\mathbb{F}_1)) \coloneqq Sh(Spec(\mathbb{F}_1)_{et}) \end{displaymath} and speak of the ``[[etale topos]] over $Spec(\mathbb{F}_1)$'', or the ``absolute [[base topos]]'' or something like this. The above [[adjoint triple]] on sites then induces a sequence of adjoint functors on the [[categories of presheaves]] by left and right [[Kan extension]] \begin{displaymath} PSh(Spec(\mathbb{Z})_{et}) \stackrel{\stackrel{Witt_!}{\longrightarrow}}{ \stackrel{\stackrel{U_! \simeq Witt^\ast}{\longleftarrow}}{ \stackrel{\stackrel{Symm_! \simeq U^\ast \simeq Witt_\ast}{\longrightarrow}}{ \stackrel{\stackrel{Symm^\ast \simeq U_\ast}{\longleftarrow}}{ \stackrel{Symm_\ast}{\longrightarrow} } } } } PSh(Spec(\mathbb{F}_1)_{et}) \end{displaymath} The top three restrict to sheaves \begin{displaymath} Sh(Spec(\mathbb{Z})_{et}) \stackrel{\stackrel{Witt_!}{\longrightarrow}}{ \stackrel{\stackrel{U_! \simeq Witt^\ast}{\longleftarrow}}{ \stackrel{Symm_! \simeq U^\ast \simeq Witt_\ast}{\longrightarrow} } } Sh(Spec(\mathbb{F}_1)_{et}) \end{displaymath} The induced [[adjoint pair]] of [[monad]]/[[comonad]] is \begin{displaymath} (W^\ast \dashv W_\ast) \coloneqq ( U_! \circ Witt_! \dashv U_! \circ Witt_\ast) \,. \end{displaymath} [[infinitesimal disk bundle]] $\dashv$ [[jet comonad]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original article which proposes the [[topos]] over [[Lambda-rings]] as a realization of [[F1]]-geometry is \begin{itemize}% \item [[James Borger]], \emph{Lambda-rings and the field with one element} (\href{http://arxiv.org/abs/0906.3146}{arXiv/0906.3146}) \end{itemize} This is based on technical details laid out in \begin{itemize}% \item [[James Borger]], \emph{The basic geometry of Witt vectors, I: The affine case} (\href{http://arxiv.org/abs/0801.1691}{arXiv:0801.1691}) \item [[James Borger]], \emph{The basic geometry of Witt vectors, II: Spaces} (\href{http://arxiv.org/abs/1006.0092}{arXiv:1006.0092}) \end{itemize} More discussion relating to this includes \begin{itemize}% \item [[Lieven Le Bruyn]], \emph{Absolute geometry and the Habiro topology} (\href{http://arxiv.org/abs/1304.6532}{arXiv:1304.6532}) \end{itemize} Related discussion of [[arithmetic jet spaces]] is in \begin{itemize}% \item [[Alexandru Buium]], \emph{Arithmetic differential equations}, volume 118 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. \item [[Alexandru Buium]], \emph{Differential calculus with integers} (\href{http://arxiv.org/abs/1308.5194}{arXiv:1308.5194}, \href{http://www.math.unm.edu/~buium/statupdated.pdf}{slighly differing pdf}) \end{itemize} Related discussion of [[power operations]] in [[E-infinity arithmetic geometry]] is around remark 2.2.9 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Rational and p-adic Homotopy Theory]]} \end{itemize} Further discussion of and speculation on an analogy between [[power operations]] and Borger's absolute geometry is in \begin{itemize}% \item [[Pierre Guillot]], \emph{Adams operations in cohomotopy} (\href{http://arxiv.org/abs/math/0612327}{arXiv:0612327}) \item [[Jack Morava]], Rakha Santhanam, \emph{Power operations and Absolute geometry} (\href{http://www.lemiller.net/media/slidesconf/AbsolutePower.pdf}{pdf}) \end{itemize} [[!redirects Borger absolute geometry]] [[!redirects Borger geometry]] [[!redirects Borger geometries]] \end{document}