\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Bousfield-Friedlander theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{stable_model_structure_on_sequential_spectra}{Stable model structure on sequential spectra}\dotfill \pageref*{stable_model_structure_on_sequential_spectra} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[model category]]-theory, the \emph{Bousfield-Friedlander theorem} (\hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78, theorem A.7}, \hyperlink{Bousfield01}{Bousfield 01, theorem 9.3}) states that if an [[endofunctor]] $Q \colon \mathcal{C} \to \mathcal{C}$ on a [[model category]] $\mathcal{C}$ behaves like an [[idempotent monad]] in an appropriate model category theoretic sense, then the [[left Bousfield localization]] [[model category]] structure of $\mathcal{C}$ at the $Q$-equivalences exists. The original proof assumed that $\mathcal{C}$ is a [[proper model category|right-proper model category]], but it turns out that this condition is not necessary (\hyperlink{Stanculescu08}{Stanculescu 08, theorem 1.1}). \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{defn} \label{QuillenIdempotentMonad}\hypertarget{QuillenIdempotentMonad}{} Let $\mathcal{C}$ be a [[proper model category]]. Say that a \textbf{Quillen idempotent monad} on $\mathcal{C}$ is \begin{enumerate}% \item an [[endofunctor]] $Q \;\colon\; \mathcal{C} \longrightarrow \mathcal{C}$ \item a [[natural transformation]] $\eta \colon id_{\mathcal{C}} \longrightarrow Q$ \end{enumerate} such that \begin{enumerate}% \item ([[homotopical functor]]) $Q$ preserves weak equivalences; \item (idempotency) for all $X \in \mathcal{C}$ the morphisms \begin{displaymath} Q(\eta_X) \;\colon\; Q(X) \overset{\in W}{\longrightarrow} Q(Q(X)) \end{displaymath} and \begin{displaymath} \eta_{Q(X)} \;\colon\; Q(X) \overset{\in W}{\longrightarrow} Q(Q(X)) \end{displaymath} are weak equivalences; \item (right-properness of the localization) if in a [[pullback]] square in $\mathcal{C}$ \begin{displaymath} \itexarray{ f^\ast W &\stackrel{f^\ast h}{\longrightarrow}& X \\ \downarrow && \downarrow^{\mathrlap{f}} \\ W &\stackrel{h}{\longrightarrow}& Y } \end{displaymath} we have that \begin{enumerate}% \item $f$ is a fibration; \item $\eta_X$, $\eta_Y$, and $Q(h)$ are weak equivalences \end{enumerate} then $Q(f^\ast h)$ is a weak equivalence. \end{enumerate} \end{defn} (Here the formulation of the third item follows \hyperlink{Bousfield01}{Bousfield 01, def. 9.2}. By lemma \ref{SecondLemmaForBousfieldFriedlander} below this condition implies that $f$ is a $Q$-fibration, which is the condition required in \hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78 (A.6)}). \begin{defn} \label{ClassesOfMorphismsInBousfieldLocalizationAtQuillenIdempotentMonad}\hypertarget{ClassesOfMorphismsInBousfieldLocalizationAtQuillenIdempotentMonad}{} For $Q \colon \mathcal{C} \longrightarrow \mathcal{C}$ a Quillen idempotent monad according to def. \ref{QuillenIdempotentMonad}, say that a morphism $f$ in $\mathcal{C}$ is \begin{enumerate}% \item a \textbf{$Q$-weak equivalence} if $Q(f)$ is a weak equivalence; \item \textbf{a $Q$-cofibation} if it is a cofibration. \item \textbf{a $Q$-fibration} if it has the [[right lifting property]] against the morphisms that are both ($Q$-)cofibrations as well as $Q$-weak equivalences. \end{enumerate} Write $\mathcal{C}_Q$ for $\mathcal{C}$ equipped with these classes of morphisms. \end{defn} \begin{lemma} \label{FirstLemmaForBousfieldFriedlander}\hypertarget{FirstLemmaForBousfieldFriedlander}{} In the situation of def. \ref{ClassesOfMorphismsInBousfieldLocalizationAtQuillenIdempotentMonad}, a morphism is an acyclic fibration in $\mathcal{C}_Q$ precisely if it is an acyclic fibration in $\mathcal{C}$. \end{lemma} \begin{proof} Let $f$ be a fibration and a weak equivalence. Since $Q$ preserves weak equivalences by condition 1 in def. \ref{QuillenIdempotentMonad}, $f$ is also a $Q$-weak equivalence. Since $Q$-cofibrations are cofibrations, the acyclic fibration $f$ has right lifting against $Q$-cofibrations, hence in particular against against $Q$-acyclic $Q$-cofibrations, hence is a $Q$-fibration. In the other direction, let $f$ be a $Q$-acyclic $Q$-fibration. Consider its factorization into a cofibration followed by an acyclic fibration \begin{displaymath} f \colon \underoverset{\in Cof}{i}{\longrightarrow} \underoverset{\in W \cap Fib}{p}{\longrightarrow} \,. \end{displaymath} Now the fact that $Q$ preserves weak equivalences together with [[two-out-of-three]] implies that $i$ is a $Q$-weak equivalence, hence a $Q$-acyclic $Q$-cofibration. This means by assumption that $f$ has the [[right lifting property]] against $i$. Hence the [[retract argument]], implies that $f$ is a [[retract]] of the acyclic fibration $p$, and so is itself an acyclic fibration. \end{proof} \begin{lemma} \label{SecondLemmaForBousfieldFriedlander}\hypertarget{SecondLemmaForBousfieldFriedlander}{} In the situation of def. \ref{ClassesOfMorphismsInBousfieldLocalizationAtQuillenIdempotentMonad}, if a morphism $f \colon X \longrightarrow Y$ is a fibration, and $\eta_X, \eta_Y$ are weak equivalences, then $f$ is a $Q$-fibration. \end{lemma} (e.g. \hyperlink{GoerssJardine96}{Goerss-Jardine 96, chapter X, lemma 4.4}). \begin{proof} We need to show that for every [[commuting square]] of the form \begin{displaymath} \itexarray{ A &\overset{\alpha}{\longrightarrow}& X \\ {}^{\mathllap{i}}_{\mathllap{\in W_Q \cap Cof_Q}}\downarrow && \downarrow^{\mathrlap{f}} \\ B &\underset{\beta}{\longrightarrow}& Y } \end{displaymath} there exists a lifting. To that end, first consider a factorization of the image under $Q$ of this square as follows: \begin{displaymath} \itexarray{ Q(A) &\overset{Q(\alpha)}{\longrightarrow}& Q(X) \\ {}^{\mathllap{Q(i)}}\downarrow && \downarrow^{\mathrlap{Q(f)}} \\ Q(B) &\underset{Q(\beta)}{\longrightarrow}& Q(Y) } \;\;\;\;\;\; \simeq \;\;\;\;\;\; \itexarray{ Q(A) &\underoverset{\in W \cap Cof}{j_\alpha}{\longrightarrow}& Z &\underoverset{\in Fib}{p_\alpha}{\longrightarrow}& Q(X) \\ {}^{\mathllap{Q(i)}}\downarrow && \downarrow^{\pi} && \downarrow^{\mathrlap{Q(f)}} \\ Q(B) &\underoverset{j_\beta}{\in W \cap Cof}{\longrightarrow}& W &\underoverset{p_\beta}{\in Fib}{\longrightarrow}& Q(Y) } \end{displaymath} (This exists even without assuming [[functorial factorization]]: factor the bottom morphism, form the pullback of the resulting $p_\beta$, observe that this is still a fibration, and then factor (through $j_\alpha$) the universal morpism from the outer square into this pullback.) Now consider the pullback of the right square above along the naturality square of $\eta \colon id \to Q$, take this to be the right square in the following diagram \begin{displaymath} \itexarray{ \alpha \colon & A &\overset{(j_\alpha \circ \eta_A, \alpha)}{\longrightarrow}& Z \underset{Q(X)}{\times} X &\overset{}{\longrightarrow}& X \\ & {}^{\mathllap{i}}\downarrow && \downarrow^{\mathrlap{(\pi,f)}} && \downarrow^{\mathrlap{f}}& \\ \beta \colon & B &\underset{(j_\beta\circ\eta_B,\beta)}{\longrightarrow}& W \underset{Q(Y)}{\times} Y &\underset{}{\longrightarrow}& Y } \,, \end{displaymath} where the left square is the universal morphism into the pullback which is induced from the naturality squares of $\eta$ on $\alpha$ and $\beta$. We claim that $(\pi,f)$ here is a weak equivalence. This implies that we find the desired lift by factoring $(\pi,f)$ into an acyclic cofibration followed by an acyclic fibration and then lifting consecutively as follows \begin{displaymath} \itexarray{ \alpha \colon & A &\overset{(j_\alpha \circ \eta_A, \alpha)}{\longrightarrow}& Z \underset{Q(X)}{\times} X &\overset{}{\longrightarrow}& X \\ & {}^{\mathllap{id}}\downarrow && {}^{\mathllap{\in W \cap Cof}}\downarrow &{}^{\mathllap{\exists}}\nearrow& \downarrow^{\mathrlap{f}}_{\mathrlap{\in Fib}}& \\ & A &\longrightarrow& &\overset{\phantom{AAAAAAA}}{\longrightarrow}& Y \\ & {}^{\mathllap{i}}_{\mathllap{\in Cof}}\downarrow &{}^{\mathllap{\exists}}\nearrow& \downarrow^{\mathrlap{\in W \cap Fib}} && \downarrow^{\mathrlap{id}}& \\ \beta \colon & B &\underset{(j_\beta\circ\eta_B,\beta)}{\longrightarrow}& W \underset{Q(Y)}{\times} Y &\longrightarrow& Y } \,. \end{displaymath} To see that $(\phi,f)$ indeed is a weak equivalence: Consider the diagram \begin{displaymath} \itexarray{ Q(A) &\underoverset{\in W \cap Cof}{j_\alpha}{\longrightarrow}& Z &\underoverset{\in W}{pr_1}{\longleftarrow}& Z \underset{Q(X)}{\times} X \\ {}^{\mathllap{Q(i)}}_{\mathllap{\in W}}\downarrow && \downarrow^{\mathrlap{\pi}} && \downarrow^{\mathrlap{(\pi,f)}} \\ Q(B) &\underoverset{j_\beta}{\in W \cap Cof}{\longrightarrow}& Z &\underoverset{pr_2}{\in W}{\longleftarrow}& W \underset{Q(X)}{\times} X } \,. \end{displaymath} Here the projections are weak equivalences as shown, because by assumption in def. \ref{QuillenIdempotentMonad} the ambient model category is [[right proper model category|right proper]] and these projections are the pullbacks along the fibrations $p_\alpha$ and $p_\beta$ of the morphisms $\eta_X$ and $\eta_Y$, respectively, where the latter are weak equivalences by assumption. Moreover $Q(i)$ is a weak equivalence, since $i$ is a $Q$-weak equivalence. Hence now it follows by [[two-out-of-three]] (\href{Introduction+to+Stable+homotopy+theory+--+P#CategoryWithWeakEquivalences}{def.}) that $\pi$ and then $(\pi,f)$ are weak equivalences. \end{proof} \begin{prop} \label{BousfieldFriedlanderTheorem}\hypertarget{BousfieldFriedlanderTheorem}{} \textbf{(Bousfield-Friedlander theorem)} For $Q \colon \mathcal{C} \longrightarrow \mathcal{C}$ a Quillen idempotent monad according to def. \ref{QuillenIdempotentMonad}, then $\mathcal{C}_Q$, def. \ref{ClassesOfMorphismsInBousfieldLocalizationAtQuillenIdempotentMonad} is a [[model category]]. \end{prop} (\hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78, theorem 8.7}, \hyperlink{Bousfield01}{Bousfield 01, theorem 9.3}, \hyperlink{GoerssJardine96}{Goerss-Jardine 96, chapter X lemma 4.5, lemma 4.6}) \begin{proof} The existence of [[limits]] and [[colimits]] is guaranteed since $\mathcal{C}$ is already assumed to be a model category. The [[two-out-of-three]] poperty for $Q$-weak equivalences is an immediate consequence of two-out-of-three for the original weak equivalences of $\mathcal{C}$. Moreover, according to lemma \ref{FirstLemmaForBousfieldFriedlander} the pair of classes $(Cof_{Q}, W_Q \cap Fib_Q)$ equals the pair $(Cof, W \cap Fib)$, and this is a [[weak factorization system]] by the model structure $\mathcal{C}$. Hence it remains to show that $(W_Q \cap Cof_Q, \; Fib_Q)$ is a [[weak factorization system]]. The condition $Fib_Q = RLP(W_Q \cap Cof_Q)$ holds by definition of $Fib_Q$. Once we show that every morphism factors as $W_Q \cap Cof_Q$ followed by $Fib_Q$, then the condition $W_Q \cap Cof_Q = LLP(Fib_Q)$ follows from the [[retract argument]] (and the fact that $W_Q$ and $Cof_Q$ are stable under retracts, because $W$ and $Cof = Cof_Q$ are). So we may conclude by showing the existence of $(W_Q \cap Cof_Q, \; Fib_Q)$ factorizations: First we consider the case of a morphism of the form $f \colon Q(Y) \to Q(Y)$. This may be factored with respect to $\mathcal{C}$ as \begin{displaymath} f \;\colon\; Q(X) \underoverset{\in W \cap Cof}{\in i}{\longrightarrow} Z \underoverset{\in Fib}{p}{\longrightarrow} Q(Y) \,. \end{displaymath} Here $i$ is already a $Q$-acyclic $Q$-cofibration. Now apply $Q$ to obtain \begin{displaymath} \itexarray{ f \colon & Q(X) &\underoverset{\in W \cap Cof}{i}{\longrightarrow}& Z &\underoverset{\in Fib}{p}{\longrightarrow}& Q(Y) \\ & \downarrow^{\mathrlap{\eta_{Q(X)}}}_{\mathrlap{\in W}} && \downarrow^{\mathrlap{\eta_Z}} && \downarrow^{\mathrlap{\eta_{Q(Y)}}}_{\mathrlap{\in W}} \\ & Q(Q(X)) &\underoverset{Q(i)}{\in W}{\longrightarrow}& Q(Z) &\underset{}{\longrightarrow}& Q(Q(Y)) } \,, \end{displaymath} where $\eta_{Q(X)}$ and $\eta_{Q(Y)}$ are weak equivalences by idempotency, and $Q(i)$ is a weak equivalence since $Q$ preserves weak equivalences. Hence by [[two-out-of-three]] also $\eta_Z$ is a weak equivalence. Therefore lemma \ref{SecondLemmaForBousfieldFriedlander} gives that $p$ is a $Q$-fibration, and hence the above factorization is already as desired \begin{displaymath} f \;\colon\; Q(X) \underoverset{\in W_Q \cap Cof_Q}{\in i}{\longrightarrow} Z \underoverset{\in Fib_Q}{p}{\longrightarrow} Q(Y) \,. \end{displaymath} Now for $g$ an arbitrary morphism $g \colon X \to Y$, form a factorization of $Q(g)$ as above and then decompose the naturality square for $\eta$ on $g$ into the pullback of the resulting $Q$-fibration along $\eta_Y$: \begin{displaymath} \itexarray{ g \colon & X &\overset{\tilde i}{\longrightarrow}& Z \underset{Q(Y)}{\times} Y &\overset{\tilde p}{\longrightarrow}& Y \\ & {}^{\mathllap{\eta_X}}_{\mathllap{\in W_Q}}\downarrow && \downarrow^{\mathrlap{\eta'}}_{\mathrlap{}} &(pb)& \downarrow^{\mathrlap{\eta_Y}}_{\mathrlap{\in W_Q}} \\ Q(g) \colon & Q(X) &\underoverset{i}{\in W_Q}{\longrightarrow}& Z &\underoverset{p}{\in Fib_Q}{\longrightarrow}& Q(Y) } \,. \end{displaymath} This exhibits $\eta'$ as the pullback of a $Q$-weak equivalence along a $Q$-fibration, and hence itself as a $Q$-weak equivalence. This way, [[two-out-of-three]] implies that $\tilde i$ is a $Q$-weak equivalence. Finally, apply factorization in $(Cof,\; W\cap Fib)$ to $\tilde i$ to obtain the desired factorization \begin{displaymath} f \;\colon\; \overset{W_Q \cap Cof}{\longrightarrow} \overset{W \cap Fib = W_Q \cap Fib_Q}{\longrightarrow} \overset{Fib_Q}{\longrightarrow} \,. \end{displaymath} \end{proof} \begin{prop} \label{CharacterizationOfFibrationsInBFModelStructures}\hypertarget{CharacterizationOfFibrationsInBFModelStructures}{} For $Q \colon \mathcal{C} \longrightarrow \mathcal{C}$ a Quillen idempotent monad according to def. \ref{QuillenIdempotentMonad}, then a morphism $f \colon X \to Y$ in $\mathcal{C}$ is a $Q$-fibration (def. \ref{ClassesOfMorphismsInBousfieldLocalizationAtQuillenIdempotentMonad}) precisely if \begin{enumerate}% \item $f$ is a fibration; \item the $\eta$-naturality square on $f$ \begin{displaymath} \itexarray{ X &\stackrel{\eta_X}{\longrightarrow}& Q(X) \\ {}^{\mathllap{f}}\downarrow &{}^{(pb)^h}& \downarrow^{\mathrlap{Q(f)}} \\ Y &\underset{\eta_Y}{\longrightarrow}& Q(Y) } \end{displaymath} exhibits a [[homotopy pullback]] in $\mathcal{C}$ (\href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyPullback}{def.}), in that for any factorization of $Q(f)$ through a weak equivalence followed by a fibration $p$, then the universally induced morphism \begin{displaymath} X \longrightarrow p^\ast Y \end{displaymath} is weak equivalence (in $\mathcal{C}$). \end{enumerate} \end{prop} (e.g. \hyperlink{GoerssJardine96}{Goerss-Jardine 96, chapter X, theorem 4.8}) \begin{proof} First consider the case that $f$ is a fibration and that the square is a homotopy pullback. We need to show that then $f$ is a $Q$-fibration. Factor $Q(f)$ as \begin{displaymath} Q(f) \;\colon\; Q(X) \underoverset{\in W \cap Cof}{i}{\longrightarrow} Z \underoverset{\in Fib}{p}{\longrightarrow} Q(Y) \,. \end{displaymath} By the proof of prop. \ref{BousfieldFriedlanderTheorem}, the morphism $p$ is also a $Q$-fibration. Hence by the existence of the $Q$-local model structure, also due to prop. \ref{BousfieldFriedlanderTheorem}, its [[pullback]] $\tilde p$ is also a $Q$-fibration \begin{displaymath} \itexarray{ X &\overset{\eta_X}{\longrightarrow}& Q(X) \\ {}^{\mathllap{\tilde i}}_{\mathllap{\in W}}\downarrow && \downarrow^{\mathrlap{i}}_{\mathrlap{\in W}} \\ Y \underset{Q(Y)}{\times} Z &\overset{p^\ast \eta_Y}{\longrightarrow}& Z \\ {}^{\mathllap{\tilde p}}_{\mathllap{\in Fib_Q}}\downarrow &(pb)& \downarrow^{\mathrlap{p}}_{\mathrlap{\in Fib_Q}} \\ Y &\underset{\eta_Y}{\longrightarrow}& Q(Y) } \,. \end{displaymath} Here $\tilde i$ is a weak equivalence by assumption that the diagram exhibits a [[homotopy pullback]]. Hence it factors as \begin{displaymath} \tilde i \;\colon\; X \underoverset{\in W \cap Cof}{j}{\longrightarrow} \hat X \underoverset{\in W \cap Fib = W_Q \cap Fib_Q}{\pi}{\longrightarrow} Y \underset{Q(Y)}{\times} Z \,. \end{displaymath} This yields the situation \begin{displaymath} \itexarray{ X &\overset{=}{\longrightarrow}& X \\ {}^{\mathllap{j}}_{\mathllap{\in W \cap Cof}}\downarrow &{}^{\mathllap{\exists}}\nearrow& \downarrow^{\mathrlap{f}}_{\mathrlap{\in Fib}} \\ \hat X &\underoverset{\tilde p \circ \pi}{\in Fib_Q}{\longrightarrow}& Y } \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \leftrightarrow \;\;\;\;\;\;\;\;\;\;\;\; \itexarray{ X &\overset{j}{\longrightarrow}& \hat X &\overset{\exists}{\longrightarrow}& X \\ {}^{\mathllap{}f}\downarrow && \downarrow^{\mathrlap{\tilde p \circ \pi}} && \downarrow^{\mathrlap{f}} \\ Y &=& Y &=& Y } \,. \end{displaymath} As in the [[retract argument]] (\href{Introduction+to+Stable+homotopy+theory+--+P#RetractArgument}{prop.}) this diagram exhibits $f$ as a [[retract]] (in the [[arrow category]], \href{Introduction+to+Stable+homotopy+theory+--+P#RetractsOfMorphisms}{rmk.}) of the $Q$-fibration $\tilde p \circ \pi$. Hence by the existence of the $Q$-model structure (prop. \ref{BousfieldFriedlanderTheorem}) and by the closure properties for fibrations (\href{Introduction+to+Stable+homotopy+theory+--+P#ClosurePropertiesOfInjectiveAndProjectiveMorphisms}{prop.}), also $f$ is a $Q$-fibration. Now for the converse. Assume that $f$ is a $Q$-fibration. Since $\mathcal{C}_Q$ is a [[Bousfield localization of model categories|left Bousfield localization]] of $\mathcal{C}$ (prop. \ref{BousfieldFriedlanderTheorem}), $f$ is also a fibration. We need to show that the $\eta$-naturality square on $f$ exhibits a homotopy pullback. So factor $Q(f)$ as before, and consider the pasting composite of the factorization of the given square with the naturality squares of $\eta$: \begin{displaymath} \itexarray{ X &\underoverset{\in W_Q}{\eta_X}{\longrightarrow}& Q(X) &\underoverset{\in W \subset W_Q}{\eta_{Q(X)}}{\longrightarrow}& Q(Q(X)) \\ {}^{\mathllap{\tilde i}}_{\mathllap{\in W_Q}}\downarrow && {}^{\mathllap{i}}_{\mathllap{\in W\subset W_Q}}\downarrow && \downarrow^{\mathrlap{Q(i)}}_{\mathrlap{\in W}} \\ Y \underset{Q(Y)}{\times} Z &\underoverset{\in W_Q}{p^\ast \eta_Y}{\longrightarrow}& Z &\underoverset{\in W}{\eta_Z}{\longrightarrow}& Q(Z) \\ {}^{\mathllap{\tilde p}}_{\mathllap{\in Fib_Q}}\downarrow &(pb)& \downarrow^{\mathrlap{p}}_{\mathrlap{\in Fib_Q \subset Fib}} && \downarrow^{\mathrlap{Q(p)}} \\ Y &\underoverset{\eta_Y}{\in W_Q}{\longrightarrow}& Q(Y) &\underoverset{\eta_{Q(Y)}}{\in W \subset W_Q}{\longrightarrow}& Q(Q(Y)) } \,. \end{displaymath} Here the top and bottom horizontal morphisms are weak ($Q$-)equivalences by the idempotency of $Q$, and $Q(i)$ is a weak equivalence since $Q$ preserves weak equivalences (first and second clause in def. \ref{QuillenIdempotentMonad}). Hence by [[two-out-of-three]] also $\eta_Z$ is a weak equivalence. From this, lemma \ref{SecondLemmaForBousfieldFriedlander} gives that $p$ is a $Q$-fibration. Then $p^\ast \eta_Y$ is a $Q$-weak equivalence since it is the pullback of a $Q$-weak equivalence along a fibration between objects whose $\eta$ is a weak equivalence, via the third clause in def. \ref{QuillenIdempotentMonad}. Finally [[two-out-of-three]] implies that $\tilde i$ is a $Q$-weak equivalence. In particular, the bottom right square is a homotopy pullback (since two opposite edges are weak equivalences, by \href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyPullbackOfWeakEquivalences}{this prop.}), and since the left square is a genuine pullback of a fibration, hence a homotopy pullback, the total bottom rectangle here exhibits a homotopy pullback by the [[pasting law]] for homotopy pullbacks (\href{Introduction+to+Stable+homotopy+theory+--+P#ClosurePropertiesOfHomotopyPullbacks}{prop.}). Now by [[natural transformation|naturality]] of $\eta$, that total bottom rectangle is the same as the following rectangle \begin{displaymath} \itexarray{ Y \underset{Q(Y)}{\times} Z &\overset{\eta_{\left(Q \underset{Q(Y)}{\times} Z\right)}}{\longrightarrow}& Q(Y \underset{Q(Y)}{\times} Z) &\underoverset{\in W}{Q(p^\ast \eta_Y)}{\longrightarrow}& Q(Z) \\ {}^{\mathllap{\tilde p}}_{\mathllap{\in Fib_Q}}\downarrow && \downarrow^{\mathrlap{Q(\tilde p)}}_{\mathrlap{}} && \downarrow^{\mathrlap{Q(p)}} \\ Y &\underset{\eta_Y}{\longrightarrow}& Q(Y) &\underoverset{Q(\eta_Y)}{\in W}{\longrightarrow}& Q(Q(Y)) } \,, \end{displaymath} where now $Q(p^\ast \eta_Y) \in W$ since $p^\ast \eta_Y \in W_Q$, as we had just established. This means again that the right square is a homotopy pullback (\href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyPullbackOfWeakEquivalences}{prop.}), and since the total rectangle still is a homotopy pullback itself, by the previous remark, so is now also the left square, by the other direction of the [[pasting law]] for homotopy pullbacks (\href{Introduction+to+Stable+homotopy+theory+--+P#ClosurePropertiesOfHomotopyPullbacks}{prop.}). So far this establishes that the $\eta$-naturality square of $\tilde p$ is a homotopy pullback. We still need to show that also the $\eta$-naturality square of $f$ is a homotopy pullback. Factor $\tilde i$ as a cofibration followed by an acyclic fibration. Since $\tilde i$ is also a $Q$-weak equivalence, by the above, [[two-out-of-three]] for $Q$-fibrations gives that this factorization is of the form \begin{displaymath} \itexarray{ X &\underoverset{\in W_Q \cap Cof = W_Q \cap Cof_Q}{j}{\longrightarrow}& \hat X &\underoverset{\in W \cap Fib = W_Q \cap Fib_Q }{\pi}{\longrightarrow}& Y\underset{Q(Y)}{\times} Z } \,. \end{displaymath} As in the first part of the proof, but now with $(W \cap Cof, Fib)$ replaced by $(W_Q \cap Cof_Q, Fib_Q)$ and using lifting in the $Q$-model structure, this yields the situation \begin{displaymath} \itexarray{ X &\overset{=}{\longrightarrow}& X \\ {}^{\mathllap{j}}_{\mathllap{\in W_Q \cap Cof_Q}}\downarrow &{}^{\mathllap{\exists}}\nearrow& \downarrow^{\mathrlap{f}}_{\mathrlap{\in Fib_Q}} \\ \hat X &\underoverset{\tilde p \circ \pi}{}{\longrightarrow}& Y } \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \leftrightarrow \;\;\;\;\;\;\;\;\;\;\;\; \itexarray{ X &\overset{j}{\longrightarrow}& \hat X &\overset{\exists}{\longrightarrow}& X \\ {}^{\mathllap{}f}\downarrow && \downarrow^{\mathrlap{\tilde p \circ \pi}} && \downarrow^{\mathrlap{f}} \\ Y &=& Y &=& Y } \,. \end{displaymath} As in the [[retract argument]] (\href{Introduction+to+Stable+homotopy+theory+--+P#RetractArgument}{prop.}) this diagram exhibits $f$ as a [[retract]] (in the [[arrow category]], \href{Introduction+to+Stable+homotopy+theory+--+P#RetractsOfMorphisms}{rmk.}) of $\tilde p \circ \pi$. Observe that the $\eta$-naturality square of the weak equivalence $\pi$ is a [[homotopy pullback]], since $Q$ preserves weak equivalences (first clause of def. \ref{QuillenIdempotentMonad}) and since a square with two weak equivalences on opposite sides is a homotopy pullback (\href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyPullbackOfWeakEquivalences}{prop.}). It follows that also the $\eta$-naturality square of $\tilde p \circ \pi$ is a homotopy pullback, by the [[pasting law]] for homotopy pullbacks (\href{Introduction+to+Stable+homotopy+theory+--+P#ClosurePropertiesOfHomotopyPullbacks}{prop.}). In conclusion, we have exhibited $f$ as a [[retract]] (in the [[arrow category]], \href{Introduction+to+Stable+homotopy+theory+--+P#RetractsOfMorphisms}{rmk.}) of a morphism $\tilde p \circ \pi$ whose $\eta$-naturality square is a homotopy pullback. By [[natural transformation|naturality]] of $\eta$, this means that the whole $\eta$-naturality square of $f$ is a retract (in the category of commuting squares in $\mathcal{C}$) of a homotopy pullback square. This means that it is itself a homotopy pullback square (\href{Introduction+to+Stable+homotopy+theory+--+P#ClosurePropertiesOfHomotopyPullbacks}{prop.}). \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{stable_model_structure_on_sequential_spectra}{}\subsubsection*{{Stable model structure on sequential spectra}}\label{stable_model_structure_on_sequential_spectra} The [[Bousfield-Friedlander model structure]] $SeqSpectra_{stable}$ on [[sequential spectra]] (in any [[proper model category|proper]], [[pointed category|pointed]] [[simplicial model category]]), modelling [[stable homotopy theory]], arises via the Bousfield-Friedlander theorem from localizing the strict model structure $SeqSpectra_{strict}$ [[transferred model structure|transferred]] from the model structure on sequences (in the [[classical model structure on simplicial sets]]/[[classical model structure on topological spaces|on topological spaces]]) at $Q$ being the [[spectrification]] endofunctor. (For pre-spectra in the [[classical model structure on simplicial sets]], [[spectrification]] is readily defined, more generally one needs to prooceed as in \href{spectrification#Schwede97}{Schwede 97, section 2.1}.) \hypertarget{references}{}\subsection*{{References}}\label{references} The theorem is due to \begin{itemize}% \item [[Aldridge Bousfield]], [[Eric Friedlander]], section A.3 of \emph{Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets}, Springer Lecture Notes in Math., Vol. 658, Springer, Berlin, 1978, pp. 80-130. (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/bousfield-friedlander.pdf}{pdf}) \end{itemize} and in improved form due to \begin{itemize}% \item [[Aldridge Bousfield]], section 9 of \emph{On the telescopic homotopy theory of spaces}, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2391--2426 (\href{http://www.ams.org/journals/tran/2001-353-06/S0002-9947-00-02649-0/}{AMS}, \href{http://www.jstor.org/stable/221952}{jstor}) \end{itemize} The right-properness condition is shown to be unnecessary in \begin{itemize}% \item Alexandru E. Stanculescu, \emph{Note on a theorem of Bousfield and Friedlander}, Topology Appl. 155 (2008), no. 13, 1434--1438 (\href{http://arxiv.org/abs/0806.4547}{arXiv:0806.4547}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], section X.4 of \emph{[[Simplicial homotopy theory]]}, (1996) \end{itemize} \end{document}