\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Burnside category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{AsEnrichedInPermutativeCategories}{As enriched in permutative categories}\dotfill \pageref*{AsEnrichedInPermutativeCategories} \linebreak \noindent\hyperlink{AsEnrichedInabelianGroups}{As enriched in abelian groups}\dotfill \pageref*{AsEnrichedInabelianGroups} \linebreak \noindent\hyperlink{EnrichedInSpectra}{As enriched in spectra}\dotfill \pageref*{EnrichedInSpectra} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_spectra}{Relation to $G$-Spectra}\dotfill \pageref*{relation_to_spectra} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} By the \emph{Burnside category} of a [[finite group]] $G$ one means either \begin{enumerate}% \item the [[category of correspondences]] in [[finite set|finite]] [[G-sets]] (Prop. \ref{PermutativeCategoryOfFiniteGSets} below) \item or an abelianization of that \begin{enumerate}% \item either by [[group completion]] of its monoidal [[hom-groupoids]] to an [[additive category|additive]] [[1-category]] (Def. \ref{AdditiveBurnsideCategory} below); \item or by forming the [[K-theory of a permutative category]] of the [[hom-groupoids]] to a [[(∞,1)-category of spectra|spectra]]-[[enriched (∞,1)-category]] (Def. \ref{SpectralBurnsideCategory} below). \end{enumerate} \end{enumerate} The plain \emph{[[Burnside ring]]} is the [[endomorphism ring]] of the [[terminal object|terminal]] [[G-set]] in the [[additive category|additive]] version of the category (Example \ref{BurnsideRingIsEndomorphismRingInBurnsideCategory} below). The [[functors]]/[[additive functors]]/[[enriched (∞,1)-functors]] from the Burnside category to, in particular, the [[category of abelian groups]]/[[(∞,1)-category of spectra]] are called \emph{[[Mackey functors]]}. A [[functor]] out of the Burnside category is called a \emph{[[Mackey functor]]}, specifically if it is an [[Ab]]-[[enriched functor]] to [[Ab]] out of the [[additive category]]-version of the Burnside category. A [[spectra]]-[[enriched functor]] out of the spectral Burnside category to [[Spectra]] is called a \emph{[[spectral Mackey functor]]}, for emphasis. These spectral Mackey functors on the Burnside category are [[equivalence of (infinity,1)-categories|equivalent]] to [[genuine G-spectra]] in [[equivariant stable homotopy theory]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} There are various incarnations of the Burnside category as [[enriched categories]], in varying degree of sophistication of the enriching ``[[cosmos]]''. They are all induced from the canonical [[structure]] of [[permutative categories]] on the [[correspondences]] between two fixed [[finite set|finite]] [[G-sets]] (made explicit as Prop. \ref{PermutativeCategoryOfFiniteGSets} below). This yields the Burnside category as \begin{enumerate}% \item \emph{\hyperlink{AsEnrichedInPermutativeCategories}{enriched in permutative categories}}; \item \emph{\hyperlink{AsEnrichedInabelianGroups}{enriched in abelian groups}}; \item \emph{\hyperlink{EnrichedInSpectra}{enriched in spectra}}. \end{enumerate} \begin{prop} \label{PermutativeCategoryOfFiniteGSets}\hypertarget{PermutativeCategoryOfFiniteGSets}{} \textbf{(the [[permutative category]] of [[finite set|finite]] [[G-sets]])} For $G$ be a [[finite group]], write $G FinSet_{sk}$ for the [[skeleton]] of the [[category]] of [[finite set|finite]] [[G-sets]]. Its [[objects]] may be identified with [[pairs]] $(n,\rho)$ consisting of a [[natural number]] $n$, reflecting the [[finite set]] $\{1,2, \cdots, n\}$, and a [[group homomorphism]] $\rho \;\colon\; G \longrightarrow S_n = Aut(\{1,2, \cdots, n\})$ from $G$ to the [[symmetric group]] on $n$ elements, reflecting the [[automorphism]] group of that finite set. Its [[morphisms]] $(n_1,\rho_1) \overset{ f }{\longrightarrow} (n_2, \rho_2)$ are [[functions]] $f \;\colon\; \{1, 2, \cdots, n_1\} \longrightarrow \{1,2, \cdots, n_2\}$ that intertwine $\rho_1$ and $\rho_2$. The [[coproduct]] $\sqcup$ of [[G-sets]] ([[disjoint union]]) makes this [[skeleton]] a [[permutative category]] $\big( G FinSet_{sk}, \sqcup \big)$. In the same way its [[slice category]] over any object $X \in G FinSet_{sk}$ becomes a [[permutative category]] $\big( G FinSet_{sk}/_{X}, \sqcup \big)$ under disjoint union of [[domains]]. Similarly, the [[Cartesian product]] of finite $G$-sets can be restricted to these [[skeleta]] to produce [[bipermutative categories]] $\big( G FinSet_{sk}/_{X}, \sqcup, \times \big)$. Finally, restriction to [[isomorphisms]] (passage to [[cores]]) yields the bipermutative [[groupoids]] $\big( Core(G FinSet_{sk})/_{X}, \sqcup, \times \big)$. \end{prop} (e.g. \hyperlink{GuillouMay11}{Guillou-May 11, Def. 1.3}, \hyperlink{BohmannOsorno14}{Bohmann-Osorno 14, Def. 1.4}) \hypertarget{AsEnrichedInPermutativeCategories}{}\subsubsection*{{As enriched in permutative categories}}\label{AsEnrichedInPermutativeCategories} \begin{defn} \label{AdditiveBurnsideCategory}\hypertarget{AdditiveBurnsideCategory}{} \textbf{([[PermCat]]-[[enriched category|enriched]] [[Burnside category]])} The [[(2,1)-category of correspondences]] $Corr(G FinSet)$ is [[equivalence of (infinity,1)-categories|equivalent]] to the [[(2,1)-category]] whose [[objects]] are the [[finite set|finite]] [[G-sets]] and whose [[hom-categories]] are the [[permutative category|permutative]] [[cores]] of [[skeleta]] of [[slice categories]] of [[G-sets]] from Def. \ref{PermutativeCategoryOfFiniteGSets}, over the [[Cartesian product]] of [[source]] and [[domain]] [[G-sets]]: \begin{displaymath} Corr(G FinSet)\big( S_1, S_2 \big) \;\simeq\; Core(G FinSet_{sk}/_{S_1 \times S_2}) \,. \end{displaymath} This locally skeletal [[(2,1)-category]] is the \emph{[[PermCat]]-[[enriched category|enriched]] Burnside category} $G Burn_{pc}$\_ It may be regarded as an [[enriched category]] over the [[multicategory]] [[PermCat]] of [[permutative categories]] (a $\mathbf{PC}$-cateory in the sense of \hyperlink{Guillout10}{Guillout 10}). \end{defn} (\hyperlink{GuillouMay11}{Guillou-May 11, Def. 1.6}, \hyperlink{BohmannOsorno14}{Bohmann-Osorno 14, Def. 7.1, 7.2}) \hypertarget{AsEnrichedInabelianGroups}{}\subsubsection*{{As enriched in abelian groups}}\label{AsEnrichedInabelianGroups} \begin{defn} \label{AdditiveBurnsideCategory}\hypertarget{AdditiveBurnsideCategory}{} \textbf{(additive Burnside category)} The \emph{additive Burnside category} $G Burn_{ad}$ of $G$ is the [[additive category]] obtained from the [[PermCat]]-[[enriched category|enriched]] Burnside category $G Burn_{pc}$ (Def. \ref{AdditiveBurnsideCategory}) under replacing each [[hom-object|hom]]-[[permutative category]] $Core(G FinSet_{sk}/_{S_1 \times S_2})$ with its [[Grothendieck group]], hence with the [[abelian group]] which is the [[group completion]] \begin{displaymath} K \;\colon\; PermCat \overset{\text{iso classes}}{\longrightarrow} CMon \overset{K}{\longrightarrow} Ab \end{displaymath} of the [[commutative monoid]] of [[isomorphism classes]] of [[objects]] in $Core(G FinSet_{sk}/_{S_1 \times S_2})$, under [[disjoint union]]: \begin{displaymath} G Burn_{ab} \;\coloneqq\; K_{\bullet} G Burn_{pc} \,. \end{displaymath} \end{defn} \begin{example} \label{BurnsideRingIsEndomorphismRingInBurnsideCategory}\hypertarget{BurnsideRingIsEndomorphismRingInBurnsideCategory}{} \textbf{([[Burnside ring]] is [[endomorphism ring]] of additive Burnside category)} The [[endomorphism ring]] of the [[terminal object|terminal]] [[G-set]] (the [[point]] $\ast$ equipped with the, necessarily, [[trivial action]]) in the additive Burnside category (Def. \ref{AdditiveBurnsideCategory}) is the \emph{[[Burnside ring]]} $A(G)$: \begin{displaymath} End_{G Burn_{ad}}(\ast, \ast) \;\simeq\; A(G) \end{displaymath} \end{example} \hypertarget{EnrichedInSpectra}{}\subsubsection*{{As enriched in spectra}}\label{EnrichedInSpectra} \begin{defn} \label{SpectralBurnsideCategory}\hypertarget{SpectralBurnsideCategory}{} (\textbf{[[Spectra]]-[[enriched category|enriched]] [[Burnside category]])} Since construction of [[K-theory spectra of permutative categories]] applies [[hom-object]]-wise to [[PermCat]]-[[enriched categories]] (\href{multifunctor#MonoidalFunctoriality}{this Prop.}) \begin{displaymath} \mathbb{K}_\bullet \;\colon\; PermCat Cat \longrightarrow Spectra Cat \end{displaymath} the image of the [[PermCat]]-[[enriched category|enriched]] [[Burnside category]] $G \mathcal{E}$ from Def. \ref{AdditiveBurnsideCategory} under forming [[hom-object]]-wise the [[K-theory spectra of permutative categories]] yields a [[Spectra]]-[[enriched category]] \begin{displaymath} G Burn_{sp} \;\coloneqq\; \mathbb{K}_\bullet G Burn_{pc} \,. \end{displaymath} This is called the \emph{spectral Burnside category}. \end{defn} (\hyperlink{GuillouMay11}{Guillou-May 11, Def. 1.12}, \hyperlink{BohmannOsorno14}{Bohmann-Osorno 14, Def. 7.3}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_spectra}{}\subsubsection*{{Relation to $G$-Spectra}}\label{relation_to_spectra} \begin{prop} \label{GSpectraAreSpectralMackeyFunctors}\hypertarget{GSpectraAreSpectralMackeyFunctors}{} \textbf{([[G-spectra]] are spectral presheaves on the spectral Burnside category)} There is a [[zig-zag]] of [[Quillen equivalences]] \begin{displaymath} [ G Burn_{sp}, Spectra ] \;\simeq_{Qu}^{zigzag}\; G Spectra \end{displaymath} between the [[model structure on functors|model category of]] [[Spectra]]-[[enriched presheaves]] over the [[spectral Burnside category]] from Def. \ref{SpectralBurnsideCategory} (``[[spectral Mackey functors]]'') and that of [[genuine G-spectra]]. This equivalence is such that the [[spectral Mackey functor]] corresponding to a fibrant [[G-spectrum]] $E$ assigns to the [[transitive action|transitive]] [[G-set]] $G/H$ the [[fixed point spectrum]] $E^H$: \begin{displaymath} G/H \;\mapsto\; E(G/H) \;\coloneqq\; [\Sigma^\infty_G G/H, E]^G \;\simeq\; E^H \,. \end{displaymath} \end{prop} (\hyperlink{GuillouMay11}{GuillouMay 11, theorem 1.13, corollary 1.14, remark 2.5}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Burnside ring]] \item [[Mackey functor]], [[equivariant stable homotopy theory]] \item [[disjunctive (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include: \begin{itemize}% \item [[Andrew Blumberg]], section 3.1 of \emph{The Burnside category}, 2017 (\href{https://www.ma.utexas.edu/users/a.debray/lecture_notes/m392c_EHT_notes.pdf}{pdf}, \href{https://github.com/adebray/equivariant_homotopy_theory}{GitHub}) \end{itemize} The spectrally-enriched version and its role in the equivalent description of [[G-spectra]] via [[spectral Mackey functors]] is due to \begin{itemize}% \item [[Bert Guillou]], [[Peter May]], \emph{Models of $G$-spectra as presheaves of spectra, (\href{http://arxiv.org/abs/1110.3571}{arXiv:1110.3571})} \end{itemize} A beautified review is given in \begin{itemize}% \item [[Anna Marie Bohmann]], [[Angélica Osorno]], section 7 of \emph{Constructing equivariant spectra via categorical Mackey functors}, Algebraic \& Geometric Topology 15.1 (2015): 537-563 (\href{http://arxiv.org/abs/1405.6126}{arXiv:1405.6126}) \end{itemize} making use of \begin{itemize}% \item [[Bertrand Guillou]], \emph{Strictification of categories weakly enriched in symmetric monoidal categories}, Theory Appl. Categ., 24:No. 20, 564–579, 2010 (\href{http://www.tac.mta.ca/tac//volumes/24/20/24-20abs.html}{TAC}) \end{itemize} [[!redirects Burnside categories]] [[!redirects spectral Burnside category]] [[!redirects spectral Burnside categories]] [[!redirects additive Burnside category]] [[!redirects additive Burnside categories]] \end{document}