\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Burnside ring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{span_by_the_coset_spaces_}{Span by the coset spaces $G/H$}\dotfill \pageref*{span_by_the_coset_spaces_} \linebreak \noindent\hyperlink{InTermsOfTheTableOfMarks}{In terms of the table of marks}\dotfill \pageref*{InTermsOfTheTableOfMarks} \linebreak \noindent\hyperlink{AsTheEquivariantStableCohomotopyOfThePoint}{As the equivariant stable cohomotopy of the point}\dotfill \pageref*{AsTheEquivariantStableCohomotopyOfThePoint} \linebreak \noindent\hyperlink{as_the_endomorphism_ring_of_the_additive_burnside_category}{As the endomorphism ring of the additive Burnside category}\dotfill \pageref*{as_the_endomorphism_ring_of_the_additive_burnside_category} \linebreak \noindent\hyperlink{relation_to_representation_ring}{Relation to representation ring}\dotfill \pageref*{relation_to_representation_ring} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The Burnside ring $A(G)$ of a [[finite group]] $G$ is the analogue of the [[representation ring]] in the category of [[finite sets]], as opposed to the category of [[finite dimensional vector spaces]] over a field $F$. Elements of the Burnside ring are thus formal differences of [[G-sets]] (with respect to [[disjoint union]]). $A$ is a contravariant functor $\text{FinGrp} \xrightarrow{A} \text{AbRing}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For \emph{any} group $G$, the \emph{Burnside [[rig]]} of $G$ is the set of isomorphism classes of the [[topos]] $FinSet^G$, the category of [[permutation representations]] of $G$ on finite sets, equipped with the addition operation descended from [[coproducts]] in $FinSet^G$ and the multiplication operation descended from [[products]] in $FinSet^G$. In fact the Burnside rig $B(G)$ is an [[exponential rig]], where exponentiation is derived from the [[cartesian closed category|cartesian closed structure]] of the topos. The \emph{Burnside ring} $A(G)$ is then the (additive) [[group completion]] of the Burnside rig, $A(G) = \mathbb{Z} \otimes_{\mathbb{N}} B(G)$. (This tensor product in [[commutative monoids]] is the coproduct of $\mathbb{Z}$ and $B(G)$ in the category of commutative rigs, and $\mathbb{Z} \otimes_{\mathbb{N}} -$ is [[left adjoint]] to the forgetful functor from [[commutative rings]] to commutative rigs.) More generally, any [[distributive category]] determines a Burnside rig (\hyperlink{Schanuel91}{Schanuel91}). Explicitly, the Burnside ring can be seen to be the free abelian group on the set $G / H_1 , G / H_2, \ldots, G / H_t$ of $G$, where $H_{1}, \ldots, H_{t}$ are representatives of the distinct conjugacy classes of $G$, equipped with the product described in Definition \ref{BurnsideMultiplicities}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{span_by_the_coset_spaces_}{}\subsubsection*{{Span by the coset spaces $G/H$}}\label{span_by_the_coset_spaces_} Since every [[finite set|finite]] [[G-set]] is a [[direct sum]] of the basic [[coset spaces]] $G/H$, for $H \hookrightarrow G$ [[subgroups]] of $G$, and since $G/H_1$ and $G/H_2$ are [[isomorphism|isomorphic]] [[G-sets]] of $H_1$ and $H_2$ are [[conjugation action|conjugate]] to each other, the Burnside ring is spanned, as an [[abelian group]] by the $[G/H]$ for $H$ ranging over [[conjugacy classes]] of subgroups. \begin{displaymath} A(G) \;\simeq_{\mathbb{Z}}\; \underset{[H \subset G]}{\oplus} [G/H] \,. \end{displaymath} Notice that the [[permutation representations]] $k[G/H]$ corresponding to these generators are precisely the [[induced representations of trivial representations]]: $k[G/H] \simeq ind_H^G(\mathbf{1})$. \hypertarget{InTermsOfTheTableOfMarks}{}\subsubsection*{{In terms of the table of marks}}\label{InTermsOfTheTableOfMarks} We discuss how the product in the Burnside ring is encoded in the [[table of marks]] of the given [[finite group]]. \begin{defn} \label{BurnsideMultiplicities}\hypertarget{BurnsideMultiplicities}{} \textbf{(Burnside multiplicities)} Given a choice of [[linear order]] on the [[conjugacy classes]] of [[subgroups]] of $G$ (for instance as in \href{table+of+marks#LinearOrderOnConjugacyClassesOfSubgroups}{this Lemma}), we say that the corresponding \emph{structure constants} of the [[Burnside ring]] (or \emph{Burnside multiplicities}) are the [[natural numbers]] \begin{displaymath} n_{i j}^\ell \;\in\; \mathbb{N} \end{displaymath} uniquely defined by the [[equation]] \begin{equation} [G/H_i] \times [G/H_j] \;=\; \underset{ \ell }{\sum} n_{i j}^\ell [G/H_\ell] \,. \label{BurnsideStructureConstants}\end{equation} \end{defn} \begin{prop} \label{BurnsideProductInTermsOfTableOfMarks}\hypertarget{BurnsideProductInTermsOfTableOfMarks}{} \textbf{([[Burnside ring]] product in terms of [[table of marks]])} The Burnside ring structure constants $\left( n_{i j}^\ell\right)$ (Def. \ref{BurnsideMultiplicities}) are equal to the following algebraic expression in the [[table of marks]] $M$ and its [[inverse matrix]] $M^{-1}$ (which exists by \href{table+of+marks#TableOfMarksIsInvertibleUpperTriangular}{this Prop.}): \begin{displaymath} n_{i j}^l \;=\; \underset{1 \leq m \leq t}{\sum} M_{i m} \cdot M_{j m} \cdot (M^{-1})_{m l} \end{displaymath} where $t$ is the dimension of $M$, i.e. $M$ is a $t \times t$ matrix. \end{prop} For [[proof]] see at \emph{[[table of marks]]}, \href{table+of+marks#BurnsideProductInTermsOfTableOfMarks}{this Prop.} \hypertarget{AsTheEquivariantStableCohomotopyOfThePoint}{}\subsubsection*{{As the equivariant stable cohomotopy of the point}}\label{AsTheEquivariantStableCohomotopyOfThePoint} \begin{prop} \label{BurnsideRingIsEquivariantStableCohomotopyOfPoint}\hypertarget{BurnsideRingIsEquivariantStableCohomotopyOfPoint}{} \textbf{([[Burnside ring is equivariant stable cohomotopy of the point]])} Let $G$ be a [[finite group]], then its [[Burnside ring]] $A(G)$ is [[isomorphism|isomorphic]] to the [[equivariant stable cohomotopy]] [[cohomology ring]] $\mathbb{S}_G(\ast)$ of the [[point]] in degree 0. \begin{displaymath} A(G) \overset{\simeq}{\longrightarrow} \mathbb{S}_G(\ast) \,. \end{displaymath} \end{prop} This is originally due to \hyperlink{Segal71}{Segal 71}, a detailed proof is given by \hyperlink{tomDieck79}{tom Dieck 79, theorem 7.6.7, 8.5.1}. See also \hyperlink{Lueck05}{Lück 05, theorem 1.13}, \hyperlink{tomDieckPetrie78}{tom Dieck-Petrie 78}. From a broader perspective, this statement is a special case of [[tom Dieck splitting]] of [[equivariant suspension spectra]] (e.g. \hyperlink{Schwede15}{Schwede 15, theorem 6.14}), see \href{tom+Dieck+splitting#OfFixedPointSpectraOfEquivariantSuspensionSpectra}{there}. [[!include Segal completion -- table]] More explicitly, this means that the Burnside ring of a group $G$ is isomorphic to the [[colimit]] \begin{displaymath} A(G) \simeq \underset{\longrightarrow}{\lim}_V [S^V,S^V]_G \end{displaymath} over $G$-[[representations]] in a complete [[G-universe]], of $G$-[[homotopy classes]] of $G$-equivariant based [[continuous functions]] from the [[representation sphere]] $S^V$ to itself (\hyperlink{GreenleesMay95}{Greenlees-May 95, p. 8}). \hypertarget{as_the_endomorphism_ring_of_the_additive_burnside_category}{}\subsubsection*{{As the endomorphism ring of the additive Burnside category}}\label{as_the_endomorphism_ring_of_the_additive_burnside_category} \begin{example} \label{BurnsideRingIsEndomorphismRingInBurnsideCategory}\hypertarget{BurnsideRingIsEndomorphismRingInBurnsideCategory}{} \textbf{([[Burnside ring]] is [[endomorphism ring]] of [[additive Burnside category]])} The [[endomorphism ring]] of the [[terminal object|terminal]] [[G-set]] (the [[point]] $\ast$ equipped with the, necessarily, [[trivial action]]) in the [[additive Burnside category]] $G Burn_{ad}$ is the \emph{Burnside ring} $A(G)$: \begin{displaymath} End_{G Burn_{ad}}(\ast, \ast) \;\simeq\; A(G) \,. \end{displaymath} \end{example} \hypertarget{relation_to_representation_ring}{}\subsubsection*{{Relation to representation ring}}\label{relation_to_representation_ring} Let $G$ be a [[finite group]]. Consider \begin{enumerate}% \item the [[Burnside ring]] $A(G)$, which is the [[Grothendieck group]] of the [[monoidal category]] $G Set$ of [[finite set|finite]] [[G-sets]]; \item the [[representation ring]] $R(G)$, which is the [[Grothendieck group]] of the monoidal category $G Rep$ of [[finite dimensional vector space|finite dimensional]] $G$-[[linear representations]]. \end{enumerate} Then then map that sends a G-set to the corresponding linear [[permutation representation]] is a [[strong monoidal functor]] \begin{displaymath} G Set \overset{\mathbb{C}[-]}{\longrightarrow} G Rep \end{displaymath} and hence induces a [[ring homomorphism]] \begin{displaymath} A(G) \overset{ \mathbb{C}[-] }{\longrightarrow} R(G) \end{displaymath} Under the identitification \begin{enumerate}% \item of the [[Burnside ring]] with the [[equivariant stable cohomotopy]] of the point \begin{displaymath} A(G) \;\simeq\; \mathbb{S}_G(\ast) \end{displaymath} (as \hyperlink{AsTheEquivariantStableCohomotopyOfThePoint}{above}) \item of the [[representation ring]] with the [[equivariant K-theory]] of the point \begin{displaymath} R(G) \;\simeq\; K_G(\ast) \end{displaymath} (see \href{representation+ring#AsEquivariantKTheoryOfThePoint}{there}) \end{enumerate} this should be the image of the initial morphism of [[E-infinity ring spectra]] \begin{displaymath} \mathbb{S} \longrightarrow KU \end{displaymath} from the [[sphere spectrum]] to [[KU]]. For details on this comparison map see at \emph{[[permutation representation]]}, \href{permutation+representation#ExamplesVirtualPermutationRepresentations}{this section}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[orbit category]] \item [[Segal conjecture]] \item [[equivariant stable cohomotopy]] \item [[beta-ring]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept was named by Dress, following \begin{itemize}% \item [[William Burnside]], \emph{Theory of Groups of Finite Order}, 1897 (\href{http://www.gutenberg.org/files/40395/40395-pdf.pdf}{pdf}) \end{itemize} Textbook accounts and lecture notes include \begin{itemize}% \item Charles Curtis, Irving Reiner, chapter XI of \emph{Representation theory of finite groups and associative algebras}, AMS 1962 \item [[Tammo tom Dieck]], \emph{[[Transformation Groups and Representation Theory]]}, Springer 1979 \item Serge Bouc, \emph{Burnside rings}, in \emph{Handbook of Algebra} Volume 2, 2000, Pages 739-804 () \item [[Tammo tom Dieck]], \emph{Representation theory}, 2009 (\href{http://www.uni-math.gwdg.de/tammo/rep.pdf}{pdf}) \item [[Stefan Schwede]], section 6 of \emph{[[Lectures on Equivariant Stable Homotopy Theory]]}, 2015 (\href{http://www.math.uni-bonn.de/people/schwede/equivariant.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[John Greenlees]], [[Peter May]], section 2 of \emph{Equivariant stable homotopy theory}, in I.M. James (ed.), \emph{Handbook of Algebraic Topology} , pp. 279-325. 1995. (\href{http://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf}{pdf}) \item [[Stephen Schanuel]], 1991, \emph{Negative sets have Euler characteristic and dimension}, in: Proc. Como 1990. Lecture Notes in Mathematics, vol. 1488. Springer-Verlag, Berlin, pp. 379--385. \end{itemize} Discussion in relation to [[equivariant stable cohomotopy]] and the [[Segal-Carlsson completion theorem]] is in \begin{itemize}% \item [[Graeme Segal]], \emph{Equivariant stable homotopy theory}, In Actes du Congr\`e{}s International des Math \'e{}maticiens (Nice, 1970), Tome 2 , pages 59–63. Gauthier-Villars, Paris, 1971 ([[SegalEquivariantStableHomotopyTheory.pdf:file]]) \item [[Tammo tom Dieck]], T. Petrie, \emph{Geometric modules over the Burnside ring}, Invent. Math. 47 (1978) 273-287; chapter 10 in: \emph{[[Transformation Groups and Representation Theory]]} (\href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/tomDieck-geometric.pdf}{pdf}) \item Erkki Laitinen, \emph{On the Burnside ring and stable cohomotopy of a finite group}, Mathematica Scandinavica Vol. 44, No. 1 (August 30, 1979), pp. 37-72 (\href{https://www.jstor.org/stable/24491306}{jstor:24491306}, [[Laitinen79.pdf:file]]) \item [[Gunnar Carlsson]], \emph{Equivariant Stable Homotopy and Segal's Burnside Ring Conjecture}, Annals of Mathematics Second Series, Vol. 120, No. 2 (Sep., 1984), pp. 189-224 (\href{https://www.jstor.org/stable/2006940}{jstor:2006940}, \href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/carlsson.pdf}{pdf}) \item C. D. Gay, G. C. Morris, and I. Morris, \emph{Computing Adams operations on the Burnside ring of a finite group}, J. Reine Angew. Math., 341 (1983), pp. 87–97. \item [[Wolfgang Lück]], \emph{The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups} (\href{https://arxiv.org/abs/math/0504051}{arXiv:math/0504051}) \end{itemize} Computational aspects are discussed in \begin{itemize}% \item Martin Kreuzer, \emph{Computational aspects of Burnside rings, part I: the ring structure}, D.P. Beitr Algebra Geom (2017) 58: 427 (\href{https://doi.org/10.1007/s13366-016-0324-4}{doi:10.1007/s13366-016-0324-4}) \end{itemize} [[!redirects Burnside rings]] [[!redirects burnside ring]] [[!redirects burnside rings]] [[!redirects Burnside rig]] [[!redirects Burnside rigs]] [[!redirects burnside rig]] [[!redirects burnside rigs]] \end{document}