\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{C-star-algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{operator_algebra}{}\paragraph*{{Operator algebra}}\label{operator_algebra} [[!include AQFT and operator algebra contents]] \hypertarget{noncommutative_geometry}{}\paragraph*{{Noncommutative geometry}}\label{noncommutative_geometry} [[!include noncommutative geometry - contents]] \hypertarget{index_theory}{}\paragraph*{{Index theory}}\label{index_theory} [[!include index theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{abstract_algebras}{Abstract $C^\ast$-algebras}\dotfill \pageref*{abstract_algebras} \linebreak \noindent\hyperlink{concrete_algebras_and_representations}{Concrete $C^\ast$-algebras and $C^\ast$-representations}\dotfill \pageref*{concrete_algebras_and_representations} \linebreak \noindent\hyperlink{DaggerFormulation}{In $\dagger$-compact categories}\dotfill \pageref*{DaggerFormulation} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{gelfandnaimark_theorem}{Gelfand-Naimark theorem}\dotfill \pageref*{gelfandnaimark_theorem} \linebreak \noindent\hyperlink{gelfandnaimarksegal_construction}{Gelfand-Naimark-Segal construction}\dotfill \pageref*{gelfandnaimarksegal_construction} \linebreak \noindent\hyperlink{gelfand_duality}{Gelfand duality}\dotfill \pageref*{gelfand_duality} \linebreak \noindent\hyperlink{General}{General}\dotfill \pageref*{General} \linebreak \noindent\hyperlink{construction_as_groupoid_convolution_algebras}{Construction as groupoid convolution algebras}\dotfill \pageref*{construction_as_groupoid_convolution_algebras} \linebreak \noindent\hyperlink{homotopy_theory}{Homotopy theory}\dotfill \pageref*{homotopy_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{abstract_algebras}{}\subsubsection*{{Abstract $C^\ast$-algebras}}\label{abstract_algebras} \begin{defn} \label{}\hypertarget{}{} A $C^*$-algebra is a [[Banach algebra]] $(A, {\|-\|})$ over a [[topological field]] $K$ (often the field $K \coloneqq \mathbb{C}$ of [[complex numbers]]) equipped with an [[involution]] $(-)^\ast$ compatible with [[complex conjugation]] if appropriate (that is: a Banach [[star-algebra]]) that satisfies the \textbf{$C^*$-identity} \begin{displaymath} {\|{A^* A}\|} = {\|{A^*}\|} \, {\|{A}\|} \end{displaymath} or equivalently the \textbf{$B^*$-identity} \begin{displaymath} {\|{A^* A}\|} = {\|{A}\|^2} \,. \end{displaymath} A [[homomorphism]] of $C^\ast$-algebras is a map that preserves all this structure. For this it is sufficient for it to be a [[star-algebra]] homomorphisms. $C^\ast$-algebras with these homomorphisms form a [[category]] [[C\emph{Alg]].} \end{defn} \begin{remark} \label{}\hypertarget{}{} Often one sees the definition without the clause (which should be in the definition of Banach $*$-algebra) that the involution is an [[isometry]] (so that ${\|A^*\|} = {\|A\|}$, which is key for the equivalence of the $B^*$ and $C^*$ identities). This follows easily from the $B^*$-identity, while it follows from the $C^*$-identity after some difficulty. \end{remark} \begin{remark} \label{}\hypertarget{}{} There are different concepts for the [[tensor product]] of $C^*$-algebras, see for example at \emph{[[spatial tensor product]]}. \end{remark} \begin{remark} \label{}\hypertarget{}{} $C^*$-algebras equipped with the [[action]] of a [[group]] by [[automorphisms]] of the algebra are called \emph{[[C-star-systems]]} . \end{remark} \hypertarget{concrete_algebras_and_representations}{}\subsubsection*{{Concrete $C^\ast$-algebras and $C^\ast$-representations}}\label{concrete_algebras_and_representations} \begin{defn} \label{}\hypertarget{}{} Given a [[complex numbers|complex]] [[Hilbert space]] $H$, a \textbf{[[concrete structure|concrete]] $C^*$-algebra} on $H$ is a $*$-[[subalgebra]] of the algebra of [[bounded operators]] on $H$ that is [[closed subspace|closed]] in the [[norm topology]]. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{[[representation of a C-star algebra|representation]]} of a $C^*$-algebra $A$ on a [[Hilbert space]] $H$ is a $*$-homomorphism from $A$ to the algebra of [[bounded operators]] on $H$. \end{defn} \begin{remark} \label{}\hypertarget{}{} It is immediate that concrete $C^*$-algebras correspond precisely to [[faithful representations]] of abstract $C^*$-algebras. It is an important theorem that \emph{every} $C^*$-algebra has a faithful representation; that is, every abstract $C^*$-algebra is [[isomorphism|isomorphic]] to a concrete $C^*$-algebra. \end{remark} \begin{remark} \label{}\hypertarget{}{} The original definition of the term `$C^*$-algebra' was in fact the concrete notion; the `C' stood for `closed'. Furthermore, the original term for the abstract notion was `$B^*$-algebra' (where the `B' stood for `Banach'). However, we now usually interpret `$C^*$-algebra' abstractly. (Compare `$W^*$-algebra' and `[[von Neumann algebra]]'.) \end{remark} \hypertarget{DaggerFormulation}{}\subsubsection*{{In $\dagger$-compact categories}}\label{DaggerFormulation} The notion of $C^*$-algebra can be abstracted to the general context of [[symmetric monoidal †-categories]], which serves to illuminate their role in \emph{[[quantum mechanics in terms of †-compact categories]]}. For a discussion of this in the finite-dimensional case see for instance (\hyperlink{Vicary}{Vicary}). \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} $C^*$-algebras are [[monadic]] over sets. More precisely, the forgetful functor $\mathbf{C^*Alg}\to\mathbf{Set}$ that assigns to each algebra the set of points in its unit ball is monadic. See J Wick Pelletier \& J Rosicky, On the equational theory of $C^*$-algebras, Algebra Universalis 30:275-284, 1993. See also [[operator algebras]]. \hypertarget{gelfandnaimark_theorem}{}\subsubsection*{{Gelfand-Naimark theorem}}\label{gelfandnaimark_theorem} The \emph{[[Gelfand-Naimark theorem]]} says that every [[C\emph{-algebra]] is [[isomorphism|isomorphic]] to a $C^\ast$-algebra of [[bounded linear operators]] on a [[Hilbert space]]. In other words, every abstract $C^*$-algebra may be made into a concrete $C^*$-algebra.} \hypertarget{gelfandnaimarksegal_construction}{}\subsubsection*{{Gelfand-Naimark-Segal construction}}\label{gelfandnaimarksegal_construction} The [[Gelfand-Naimark-Segal construction]] ([[GNS construction]]) establishes a correspondence between cyclic $*$-[[representation]]s of $C^*$-[[C\emph{-algebra|algebras]] and certain linear functionals (usually called \emph{[[state on an operator algebra|states]]}) on those same $C^*$-algebras. The correspondence comes about from an explicit construction of the [[star-representation|}-representation]] from one of the [[linear functionals|linear functionals]] (states). \hypertarget{gelfand_duality}{}\subsubsection*{{Gelfand duality}}\label{gelfand_duality} [[Gelfand duality]] says that every ([[unital algebra|unital]]) \emph{[[commutative C-star-algebra|commutative]]} $C^*$-algebra over the [[complex numbers]] is that of complex-valued [[continuous functions]] from some [[compactum|compact Hausdorff topological space]]: there is an [[equivalence of categories]] $C^* CAlg \simeq$ [[Top]]${}_{cpt}$. Accordingly one may think of the study of non-commutative $C^\ast$-algebras as \emph{[[non-commutative topology]]}. \hypertarget{General}{}\subsubsection*{{General}}\label{General} \begin{prop} \label{}\hypertarget{}{} For $A$ and $B$ two $C^\ast$-algebras and $f : A \to B$ a [[star-algebra]] [[homomorphism]] the set-theoretic [[image]] $f(A) \subset B$ is a $C^\ast$-subalgebra of $B$, hence is also the [[image]] of $f$ in $C^\ast Alg$. \end{prop} This is (\hyperlink{KadisonRingrose}{KadisonRingrose, theorem 4.1.9}). \begin{cor} \label{}\hypertarget{}{} There is a [[functor]] \begin{displaymath} \mathcal{C} : C^\ast Alg \to Poset \end{displaymath} to the [[category]] [[Poset]] of [[posets]], which sends each $A \in C^\ast Alg$ to its [[poset of commutative subalgebras]] $\mathcal{C}(A)$ and sends each morphism $f : A \to B$ to the [[functor]] $\mathcal{C}(f) : \mathcal{C}(A) \to \mathcal{C}(B)$ which sends a [[commutative C-star-algebra|commutative]] subalgebra $C \subset A$ to $f(C) \subset B$. \end{cor} \hypertarget{construction_as_groupoid_convolution_algebras}{}\subsubsection*{{Construction as groupoid convolution algebras}}\label{construction_as_groupoid_convolution_algebras} Many $C^\ast$-algebras arise as [[groupoid algebras]] of [[Lie groupoids]]. See at \emph{\href{category+algebra#ReferencesForSmoothGeometry}{groupoid algebra - References - For smooth geometry}} \hypertarget{homotopy_theory}{}\subsubsection*{{Homotopy theory}}\label{homotopy_theory} There is [[homotopy theory]] of $C^\ast$-algebras, being a non-commutative generalization of that of [[Top]]. (e.g. \hyperlink{Uuye}{Uuye 12}). For more see at \emph{[[homotopical structure on C\emph{-algebras]]\_.}} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} Any algebra $M_n(A)$ of [[matrices]] with [[coefficients]] in a $C^\ast$-algebra is again a $C^\ast$-algebra. In particular $M_n(\mathbb{C})$ is a $C^\ast$-algebra for all $n \in \mathbb{N}$. \end{example} \begin{example} \label{}\hypertarget{}{} For $A$ a $C^\ast$-algebra and for $X$ a [[locally compact topological space|locally compact]] [[Hausdorff topological space]], the set of [[continuous functions]] $X \to A$ which [[vanish at infinity]] is again a $C^\ast$-algebra by extending all operations pointwise. (This algebra is [[unital algebra|unital]] precisely if $A$ is and if $X$ is a [[compact topological space]].) This algebra is denoted \begin{displaymath} C_0(X,A) \in C^\ast Alg \,. \end{displaymath} If $A = \mathbb{C}$ then one usually just writes \begin{displaymath} C_0(X) \coloneqq C_0(X, \mathbb{C}) \,. \end{displaymath} This are the $C^\ast$-algebras to which the [[Gelfand duality]] theorem applies. \end{example} \begin{example} \label{}\hypertarget{}{} A [[uniformly hyperfinite algebra]] is in particular a $C^\ast$-algebra, by definition. \end{example} \begin{example} \label{}\hypertarget{}{} A [[von Neumann algebra]] is in particular a $C^\ast$-algebra, by definition. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[commutative C-star-algebra]], [[Gelfand duality]], [[noncommutative topology]] \item [[separable C\emph{-algebra]], [[homogeneous C}-algebra]] \item [[nuclear C\emph{-algebra]]} \item [[unitisation of C\emph{-algebras]]} \item [[von Neumann algebra]], [[enveloping von Neumann algebra]] \item [[JB-algebra]], [[JLB-algebra]] \item [[dense subalgebra]], [[F-star-algebra]] \item [[multiplier algebra]] \item [[graded C\emph{-algebra]]} \item [[tensor product of C\emph{-algebras]]} \item [[crossed product C\emph{-algebra]]} \item [[Cuntz algebra]] \item [[Poincaré duality C\emph{-algebra]]} \item [[Hilbert C\emph{-module]], [[Hilbert C}-bimodule]], [[amplimorphism]] \item [[C\emph{-category]]} \item [[C\emph{-coalgebra]], [[Hopf C}-algebra]] \item [[continuous field of C\emph{-algebras]]} \item [[homotopical structure on C\emph{-algebras]]} \begin{itemize}% \item [[asymptotic C\emph{-homomorphism]], [[l.m.c.-C}-algebra]] \item [[KK-theory]], [[E-theory]] \end{itemize} \item [[AQFT]] \begin{itemize}% \item [[state on an operator algebra]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook reference is chapter 4 in volume 1 of \begin{itemize}% \item Richard Kadison, John Ringrose, \emph{Fundamentals of the theory of operator algebras} Academic Press, (1983) \end{itemize} An exposition that explicitly gives [[Gelfand duality]] as an [[equivalence of categories]] and introduces all the notions of [[category theory]] necessary for this statement is in \begin{itemize}% \item Ivo Dell'Ambrogio, \emph{Categories of $C^\ast$-algebras} (\href{http://www.math.ethz.ch/u/ambrogio/exercise_C_-algebras.pdf}{pdf}) \end{itemize} For [[operator algebra]]-theory see there and see \begin{itemize}% \item [[Stanisław Woronowicz]], \emph{Unbounded elements affiliated with $C^\ast$-algebras and non-compact quantum groups. Commun. Math. Phys. 136, 399--432 (1991)} \item [[Stanisław Woronowicz]], K. Napi\'o{}rkowski, \emph{[[Operator theory in the C\emph{-algebra framework]]\_, Reports on Mathematical Physics Volume 31, Issue 3, June 1992, Pages 353--371 (\href{http://www.sciencedirect.com/science/article/pii/003448779290025V}{publisher}, \href{http://www.fuw.edu.pl/~slworono/PDF-y/OP.pdf}{pdf})}} \end{itemize} A characterizations of injections of commutative sub-$C^*$-algebras -- hence of the [[poset of commutative subalgebras]] of a $C^*$-algebra -- is in \begin{itemize}% \item [[Chris Heunen]], \emph{Characterizations of categories of commutative $C^*$-algebras} (\href{http://arxiv.org/abs/1106.5942}{arXiv:1106.5942}) \end{itemize} General properties of the [[category]] of $C^\ast$-algebras are discussed in \begin{itemize}% \item [[Ralf Meyer]], \emph{Categorical aspects of bivariant K-theory}, (\href{http://arxiv.org/abs/math/0702145}{arXiv:math/0702145}) \end{itemize} Specifically [[pullback]] and [[pushout]] of $C^\ast$-algebras is discussed in \begin{itemize}% \item Gerd Petersen, \emph{Pullback and pushout constructions in $C^\ast$-algebra theory} (\href{http://www.math.ru.nl/~mueger/ped2.pdf}{pdf}) \end{itemize} The [[homotopy theory]] of $C^\ast$-algebras (a [[category of fibrant objects]]-structure on $C^\ast Alg$) is discussed in \begin{itemize}% \item Otgonbayar Uuye, \emph{Homotopy theory for $C^\ast$-algebras} (\href{http://arxiv.org/abs/1011.2926}{arXiv:1011.2926}) \end{itemize} For more along such lines see the references at \emph{[[KK-theory]]} and \emph{[[E-theory]]}. [[!redirects C-star-algebra]] [[!redirects C-star-algebras]] [[!redirects C-star algebra]] [[!redirects C-star algebras]] [[!redirects C\emph{-algebra]] [[!redirects C} algebra]] [[!redirects C\emph{-algebras]] [[!redirects C} algebras]] [[!redirects C-\emph{-algebra]] [[!redirects C-} algebra]] [[!redirects C-\emph{-algebras]] [[!redirects C-} algebras]] [[!redirects B-star-algebra]] [[!redirects B-star-algebras]] [[!redirects B-star algebra]] [[!redirects B-star algebras]] [[!redirects B\emph{-algebra]] [[!redirects B} algebra]] [[!redirects B\emph{-algebras]] [[!redirects B} algebras]] [[!redirects B-\emph{-algebra]] [[!redirects B-} algebra]] [[!redirects B-\emph{-algebras]] [[!redirects B-} algebras]] [[!redirects C\emph{-identity]] [[!redirects B}-identity]] \end{document}