\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{CW approximation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{for_topological_spaces}{For topological spaces}\dotfill \pageref*{for_topological_spaces} \linebreak \noindent\hyperlink{for_sequential_topological_spectra}{For sequential topological spectra}\dotfill \pageref*{for_sequential_topological_spectra} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For every [[topological space]] $X$ there is a [[CW complex]] $Z$ and a [[weak homotopy equivalence]] $f \colon Z\to X$. Such a map $f \colon Z\to X$ is called a \textbf{CW approximation} to $X$. Such CW-approximation may be constructed case-by-case by iteratively attaching (starting from the empty space) cells for each representative of a [[homotopy group]] of $X$ and further cells to kill off spurious homotopy groups introduced this way (e.g. \hyperlink{Hatcher}{Hatcher, p. 352-353}). In the [[classical model structure on topological spaces]] $Top_{Quillen}$, the cofibrant objects are the [[retracts]] of [[cell complexes]], and hence CW approximations are in particular cofibrant replacements in this model structure. The [[Quillen equivalence]] $Top_{Quillen} \stackrel{\overset{{\vert - \vert}}{\longleftarrow}}{\underset{Sing}{\longrightarrow}} sSet_{Quillen}$ to the [[classical model structure on simplicial sets]] (``[[homotopy hypothesis]]'') yields a \emph{functorial} CW approximation (by \href{geometric+realization#mono}{this proposition}) via \begin{displaymath} X \mapsto {\vert Sing X\vert} \end{displaymath} ([[geometric realization]] of the [[singular simplicial complex]] of $X$) with the [[adjunction counit]] \begin{displaymath} {\vert Sing X\vert} \overset{\in W}{\longrightarrow} X \end{displaymath} a weak homotopy equivalence. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{for_topological_spaces}{}\subsubsection*{{For topological spaces}}\label{for_topological_spaces} \begin{prop} \label{nConnectedCWApproximationOfContinuousFunction}\hypertarget{nConnectedCWApproximationOfContinuousFunction}{} Let $f \;\colon\; A \longrightarrow X$ be a [[continuous function]] between [[topological spaces]]. Then there exists for each $n \in \mathbb{N}$ a [[relative CW-complex]] $\hat f \colon A \hookrightarrow \hat X$ together with an [[extension]] $\phi \colon \hat X \to X$, i.e. \begin{displaymath} \itexarray{ A &\overset{f}{\longrightarrow}& X \\ {}^{\mathllap{\hat f}}\downarrow & \nearrow_{\mathrlap{\phi}} \\ \hat X } \end{displaymath} such that $\phi$ is [[n-connected continuous function|n-connected]]. Moreover: \begin{itemize}% \item if $f$ itself is [[n-connected continuous function|k-connected]], then the relative CW-complex $\hat f$ may be chosen to have cells only of [[dimension]] $k + 1 \leq dim \leq n$. \item if $A$ is already a [[CW-complex]], then $\hat f \colon A \to X$ may be chosen to be a subcomplex inclusion. \end{itemize} \end{prop} (\hyperlink{tomDieck08}{tomDieck 08, theorem 8.6.1}) \begin{prop} \label{CWApproximationForContinuousFunctions}\hypertarget{CWApproximationForContinuousFunctions}{} For every [[continuous function]] $f \colon A \longrightarrow X$ out of a [[CW-complex]] $A$, there exists a [[relative CW-complex]] $\hat f \colon A \longrightarrow \hat X$ that factors $f$ followed by a [[weak homotopy equivalence]] \begin{displaymath} \itexarray{ A && \overset{f}{\longrightarrow} && X \\ & {}_{\mathllap{\hat f}}\searrow && \nearrow_{\mathrlap{{\phi} \atop {\in WHE}}} \\ && \hat X } \,. \end{displaymath} \end{prop} \begin{proof} Apply lemma \ref{nConnectedCWApproximationOfContinuousFunction} iteratively for $n \in \mathbb{N}$ to produce a sequence with [[cocone]] of the form \begin{displaymath} \itexarray{ A &\overset{f_0}{\longrightarrow}& X_0 &\overset{f_2}{\longrightarrow}& X_1 &\longrightarrow & \cdots \\ &{}_{\mathllap{f}}\searrow & \downarrow^{\mathrlap{\phi_0}} & \swarrow_{\mathrlap{\phi_1}} & \cdots \\ && X } \,, \end{displaymath} where each $f_n$ is a [[relative CW-complex]] adding cells exactly of dimension $n$, and where $\phi_n$ in [[n-connected continuous function|n-connected]]. Let then $\hat X$ be the [[colimit]] over the sequence (its [[transfinite composition]]) and $\hat f \colon A \to X$ the induced component map. By definition of relative CW-complexes, this $\hat f$ is itself a relative CW-complex. By the [[universal property]] of the colimit this factors $f$ as \begin{displaymath} \itexarray{ A &\overset{f_0}{\longrightarrow}& X_0 &\overset{f_1}{\longrightarrow}& X_1 &\longrightarrow & \cdots \\ &{}_{\mathllap{}}\searrow & \downarrow^{\mathrlap{}} & \swarrow_{\mathrlap{}} & \cdots \\ && \hat X \\ && \downarrow^{\mathrlap{\phi}} \\ && X } \,. \end{displaymath} Finally to see that $\phi$ is a weak homotopy equivalence: since [[n-spheres]] are [[compact topological spaces]], then every map $\alpha \colon S^n \to \hat X$ factors through a finite stage $i \in \mathbb{N}$ as $S^n \to X_i \to \hat X$ (by \href{Introduction+to+Stable+homotopy+theory+--+P#CompactSubsetsAreSmallInCellComplexes}{this lemma}). By possibly including further into higher stages, we may choose $i \gt n$. But then the above says that further mapping along $\hat X \to X$ is the same as mapping along $\phi_i$, which is $(i \gt n)$-connected and hence an isomorphism on the homotopy class of $\alpha$. \end{proof} \hypertarget{for_sequential_topological_spectra}{}\subsubsection*{{For sequential topological spectra}}\label{for_sequential_topological_spectra} \begin{prop} \label{CWApproximationForSequentialSpectra}\hypertarget{CWApproximationForSequentialSpectra}{} For $X$ any [[sequential spectrum]] in [[Top]], then there exists a [[CW-spectrum]] $\hat X$ and a homomorphism $\phi \colon \hat X \to X$ which is degreewise a [[weak homotopy equivalence]], hence in particular a [[stable weak homotopy equivalence]]. \end{prop} \begin{proof} First let $\hat X_0 \longrightarrow X_0$ be a CW-approximation of the component space in degree 0, via prop. \ref{CWApproximationForContinuousFunctions}. Then proceed by [[induction]]: suppose that for $n \in \mathbb{N}$ a [[CW-approximation]] $\phi_{k \leq n} \colon \hat X_{k \leq n} \to X_{k \leq n}$ has been found such that all the structure maps are respected. Consider then the continuous function \begin{displaymath} \Sigma \hat X_n \overset{\Sigma \phi_n}{\longrightarrow} \Sigma X_n \overset{\sigma_n}{\longrightarrow} X_{n+1} \,. \end{displaymath} Applying prop. \ref{CWApproximationForContinuousFunctions} to this function factors it as \begin{displaymath} \Sigma X_n \hookrightarrow \hat X_{n+1} \overset{\phi_{n+1}}{\longrightarrow} X_{n+1} \,. \end{displaymath} Hence we have obtained the next stage of the CW-approximation. The respect for the structure maps is just this factorization property: \begin{displaymath} \itexarray{ \Sigma \hat X_n &\overset{\Sigma \phi_n}{\longrightarrow}& \Sigma X_n \\ {}^{incl}\downarrow && \downarrow^{\mathrlap{\sigma_n}} \\ \hat X_{n+1} &\underset{\phi_{n+1}}{\longrightarrow}& X_{n+1} } \,. \end{displaymath} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Whitehead's theorem]] \item \href{CW-spectrum#CWApproximation}{CW-approximation for sequential spectra} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Tammo tom Dieck]], section 8.6 of \emph{Algebraic topology}, EMS (2008) \item [[Allen Hatcher]], \emph{Algebraic topology}, Cambridge Univ. Press 2002; Chapter 4, \href{http://www.math.cornell.edu/~hatcher/AT/AT-CWapprox.pdf}{Section 4.1 pdf} \end{itemize} [[!redirects CW-approximation]] [[!redirects CW approximations]] [[!redirects CW-approximations]] \end{document}