\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{CW-spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{via_spectrum_attaching_maps}{Via spectrum attaching maps}\dotfill \pageref*{via_spectrum_attaching_maps} \linebreak \noindent\hyperlink{category_of_cwspectra}{Category of CW-spectra}\dotfill \pageref*{category_of_cwspectra} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Cofibrancy}{Cofibrancy}\dotfill \pageref*{Cofibrancy} \linebreak \noindent\hyperlink{CWApproximation}{CW-approximation}\dotfill \pageref*{CWApproximation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{CW-spectrum} is the analogue for [[sequential spectra]] in [[Top]] of the concept of [[CW-complex]] for [[topological spaces]]. Just like [[CW-complexes]] are cofibrant objects in the [[classical model structure on topological spaces]], so CW-spectra are cofibrant objects in the [[stable model category|stable]] [[model structure on topological sequential spectra]], see \hyperlink{Cofibrancy}{below}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} \begin{defn} \label{CWSpectrum}\hypertarget{CWSpectrum}{} A \textbf{CW-spectrum} $X_\bullet\in SeqSpec(Top)$ is a [[sequential spectrum]] in [[Top]] such that \begin{enumerate}% \item all component spaces $X_n$ are [[CW-complexes]], \item all structure maps $\Sigma X_n \longrightarrow X_{n+1}$ are inclusions of subcomplexes \end{enumerate} \end{defn} e.g. (\hyperlink{Adams74}{Adams 74, p. 139}) Beware that for instance (\hyperlink{Switzer75}{Switzer 75, def. 8.1}) says just ``spectrum'' for ``CW-spectrum''. For a CW-spectrum $X$ there is a concept of ``cell of a spectrum'': \begin{defn} \label{CellOfACWSpectrum}\hypertarget{CellOfACWSpectrum}{} A \textbf{cell} of a CW-spectrum, def. \ref{CWSpectrum} is a cell of one of the components CW-complexes $X_n$, together with all its suspensions in all the higher component spaces $X_{\gt n}$, subject to the condition that the first cell itself is not itself the suspension of a cell in $X_{n-1}$. \end{defn} This way every CW-spectrum is the union of all its cells in the sense of def. \ref{CellOfACWSpectrum}. (e.g. \href{Switzer75}{Switzer 75, 8.4}). \begin{defn} \label{}\hypertarget{}{} A CW-spectrum, def. \ref{CWSpectrum}, is called a \emph{[[finite spectrum]]} (or countable spectrum, etc.) if it has [[finite number|finitely many]] cells (countably many cells) according to def. \ref{CellOfACWSpectrum}. \end{defn} \hypertarget{via_spectrum_attaching_maps}{}\subsubsection*{{Via spectrum attaching maps}}\label{via_spectrum_attaching_maps} \begin{defn} \label{SphereSpectrumOfIntegerDimension}\hypertarget{SphereSpectrumOfIntegerDimension}{} For $n \in \mathbb{Z}$ (possibly negative) define $\mathbb{S}^n$ to be the [[sequential prespectrum]] with component spaces \begin{displaymath} (\mathbb{S}^{n})_k \coloneqq \left\{ \itexarray{ S^{k+n} & if \; k + n \geq 0 \\ \ast & otherwise } \right. \end{displaymath} and with structure maps the canonical isomorphisms. \end{defn} (\hyperlink{LewisMaySteinberger86}{Lewis-May-Steinberger 86, def. 4.3}) \begin{defn} \label{}\hypertarget{}{} In def. \ref{SphereSpectrumOfIntegerDimension} \begin{itemize}% \item for $n = 0$ then $\mathbb{S}^0 = \mathbb{S} = \Sigma^\infty S^0$ is standard sequential incarnation of the [[sphere spectrum]]; \item for $n \geq n$ then $\mathbb{S}^n \simeq \Sigma^\infty S^n$ is the [[suspension spectrum]] on the [[n-sphere]]; \item for general $n$ then $\mathbb{S}^n \simeq F_{-n} S^0$ is also known as the $(-n)$th [[free spectrum]] on $S^0$. \end{itemize} \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{[[cell spectrum]]} is a topological [[sequential spectrum]] $X$ realized as the [[colimit]] over a sequence of spectra $\ast = X_0 \to X_1 \to X_2 \to X_3 \to \cdots$ such that there are morphisms \begin{displaymath} j_n \;\colon\; \left( \underset{i \in I_n}{\sqcup} \mathbb{S}^{q_n} \right) \longrightarrow X_n \end{displaymath} with $X_{n+1}= Cone(j_n)$ (the [[mapping cone]]). (\href{Introduction+to+Stable+homotopy+theory+--+1-1#StrictModelStructureCellAttachmentToSpectra}{rmk.}) A cell spectrum is a \textbf{CW-spectrum} if each attaching map $\Sigma^\infty S^{q_n}\to X_n$ factors through a $X_k \to X_n$ with $k \lt q$. \end{defn} (e.g. \hyperlink{LewisMaySteinberger86}{Lewis-May-Steinberger 86, def. 5.1, def. 5.2}, \hyperlink{Weiss}{Weiss}) \hypertarget{category_of_cwspectra}{}\subsubsection*{{Category of CW-spectra}}\label{category_of_cwspectra} There is an obvious category of CW-spectra given as the full subcategory $CWSpec'$ of $SeqSpec(Top)$ consisting of the CW-spectra, ie. a morphism of CW-spectra $f: X \to Y$ is given by levelwise maps $f_n: X_n \to F_n$ that are compatible with the structure maps. In accordance with \href{Switzer75}{Switzer 75, 8.9}, we call morphisms in this sense \textbf{functions}. However, often there is a more useful notion of morphisms between CW-spectra. \begin{defn} \label{}\hypertarget{}{} Let $E$ be a CW-spectrum. A \textbf{subspectrum} is a CW spectrum $F$ such that each $F_n$ is a subcomplex of $E_n$. A subspectrum is \textbf{cofinal} if for each cell $e_n \in E_n$, there is some $m$ such that $\Sigma^m e_n \in F_{n + m}$. \end{defn} We can then construct the category $CWSpec$ as the [[localization]] of $CWSpec'$ at the cofinal inclusions. Since the class of cofinal inclusions admit a [[calculus of right fractions]], the cateogry $CWSpec$ has the following concrete description - a morphism $X \to Y$ in $CWSpec$ is given by a function $\tilde{X} \to Y$, where $\tilde{X}$ is some cofinal subspectrum of $X$, quotiented by the relation that two such morphisms $f: \tilde{X} \to Y$ and $f': \tilde{X}' \to Y$ are considered equivalent if there is some further cofinal subspectrum $\tilde{X}'' \subseteq \tilde{X} \cap \tilde{X'}$ such that $f|_{\tilde{X}'} = f'|_{\tilde{X}''}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Cofibrancy}{}\subsubsection*{{Cofibrancy}}\label{Cofibrancy} \begin{prop} \label{}\hypertarget{}{} A [[sequential spectrum]] $X\in SeqSpec(Top)_{stable}$ is cofibrant in the stable [[model structure on topological sequential spectra]] in particular if all component spaces are [[cell complexes]] and all its structure morphisms $S^1 \wedge X_n \to X_{n+1}$ are [[relative cell complexes]]. In particular [[CW-spectra]], def. \ref{CellOfACWSpectrum}, are cofibrant in $SeqSpec(Top)_{stable}$. \end{prop} For the proof see \href{model+structure+on+topological+sequential+spectra#CellSpectraAreCofibrantInModelStructureOnTopologicalSequentialSpectra}{there}. \begin{prop} \label{}\hypertarget{}{} For $X\in SeqSpec(Top)_{stable}$ a [[CW-spectrum]], then its standard [[cylinder spectrum]] $X \wedge (I_+)$ is a \emph{good} [[cylinder object]], in that the inclusion \begin{displaymath} X \vee X \longrightarrow X \wedge (I_+) \end{displaymath} is a cofibration in $SeqSpec(Top)_{stable}$. \end{prop} See \href{model+structure+on+topological+sequential+spectra#CylinderSpectrumOverCWSpectrumIsGood}{this prop.}. \hypertarget{CWApproximation}{}\subsubsection*{{CW-approximation}}\label{CWApproximation} The analog of [[CW-approximation]] for [[topological spaces]] holds true for topological [[sequential spectra]]: \begin{prop} \label{}\hypertarget{}{} For $X \in SeqSpec(Top)$ a topological [[sequential spectrum]], there exists a CW-spectrum $\hat X$ and a [[stable weak homotopy equivalence]] \begin{displaymath} \hat X \longrightarrow X \,. \end{displaymath} \end{prop} (e.g. \hyperlink{ElmendorfKrizMay95}{Elmendorf-Kriz-May 95, theorem 1.5}) \begin{proof} First let $\hat X_0 \longrightarrow X_0$ be a CW-approximation of the component space in degree 0, via \href{CW+approximation#CWApproximationForContinuousFunctions}{this prop.}. Then proceed by [[induction]]: suppose that for $n \in \mathbb{N}$ a [[CW-approximation]] $\phi_{k \leq n} \colon \hat X_{k \leq n} \to X_{k \leq n}$ has been found such that all the structure maps are respected. Consider then the continuous function \begin{displaymath} \Sigma \hat X_n \overset{\Sigma \phi_n}{\longrightarrow} \Sigma X_n \overset{\sigma_n}{\longrightarrow} X_{n+1} \,. \end{displaymath} Applying \href{CW+approximation#CWApproximationForContinuousFunctions}{that prop.} to this function factors it as \begin{displaymath} \Sigma X_n \hookrightarrow \hat X_{n+1} \overset{\phi_{n+1}}{\longrightarrow} X_{n+1} \,. \end{displaymath} Hence we have obtained the next stage of the CW-approximation. The respect for the structure maps is just this factorization property: \begin{displaymath} \itexarray{ \Sigma \hat X_n &\overset{\Sigma \phi_n}{\longrightarrow}& \Sigma X_n \\ {}^{incl}\downarrow && \downarrow^{\mathrlap{\sigma_n}} \\ \hat X_{n+1} &\underset{\phi_{n+1}}{\longrightarrow}& X_{n+1} } \,. \end{displaymath} \end{proof} \begin{proof} A high-powered way to see this is to use the [[Quillen equivalence]] between the stable [[model structure on topological sequential spectra]] and the stable [[Bousfield-Friedlander model structure]] (see there) on sequential spectra in [[simplicial sets]]. This implies that a CW-approximation is given by \begin{displaymath} {\vert Q Sing X\vert} \overset{\in W_{stable}}{\longrightarrow} X \,, \end{displaymath} where ${\vert - \vert} \dashv Sing$ is degreewise the adjunction between [[geometric realization]] and forming [[singular simplicial complex]], and $Q$ denotes any cofibrant replacement in the BF-model structure. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Frank Adams]], section III.2 and III.3 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Robert Switzer]], \emph{Algebraic Topology - Homotopy and Homology}, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975. \item [[Anthony Elmendorf]], [[Igor Kriz]], [[Peter May]], section 1 of \emph{[[Modern foundations for stable homotopy theory]]}, in [[Ioan Mackenzie James]] (ed.), \emph{[[Handbook of Algebraic Topology]]}, 1995 Amsterdam: North-Holland, pp. 213--253, (\href{http://hopf.math.purdue.edu/Elmendorf-Kriz-May/modern_foundations.pdf}{pdf}) \item [[Michael Weiss]], around pages 43-46 of \emph{Homotopy theory and bordism theory} (\href{http://www.maths.ed.ac.uk/~aar/papers/abdnbordism.pdf}{pdf}) \end{itemize} Discussion in the generality of [[equivariant spectra]] is in \begin{itemize}% \item [[L. Gaunce Lewis]], [[Peter May]], and M. Steinberger (with contributions by J.E. McClure), section I.5 of \emph{Equivariant stable homotopy theory} Springer Lecture Notes in Mathematics Vol.1213. 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}) \end{itemize} [[!redirects CW spectra]] [[!redirects CW-spectrum]] [[!redirects CW-spectra]] [[!redirects CW spectrum]] \end{document}