\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cahiers topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{synthetic_differential_geometry}{}\paragraph*{{Synthetic differential geometry}}\label{synthetic_differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{synthetic_differential_geometry_2}{Synthetic differential geometry}\dotfill \pageref*{synthetic_differential_geometry_2} \linebreak \noindent\hyperlink{connectedness_locality_and_cohesion}{Connectedness, locality and cohesion}\dotfill \pageref*{connectedness_locality_and_cohesion} \linebreak \noindent\hyperlink{ConvenientVectorSpaces}{Convenient vector spaces}\dotfill \pageref*{ConvenientVectorSpaces} \linebreak \noindent\hyperlink{synthetic_tangent_bundles_of_smooth_spaces}{Synthetic tangent bundles of smooth spaces}\dotfill \pageref*{synthetic_tangent_bundles_of_smooth_spaces} \linebreak \noindent\hyperlink{RelationToSyntheticTangentSpaces}{Synthetic tangent spaces}\dotfill \pageref*{RelationToSyntheticTangentSpaces} \linebreak \noindent\hyperlink{variants_and_generalizations}{Variants and generalizations}\dotfill \pageref*{variants_and_generalizations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Cahier topos} is a [[cohesive topos]] that constitutes a [[Models for Smooth Infinitesimal Analysis|well-adapted model]] for [[synthetic differential geometry]] (a ``[[smooth topos]]''). It is the [[sheaf topos]] on the [[site]] [[FormalCartSp]] of [[infinitesimal object|infinitesimally thickened]] [[Cartesian spaces]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let [[FormalCartSp]] be the [[full subcategory]] of the category of [[smooth loci]] on those of the form \begin{displaymath} \mathbb{R}^n \times \ell W \,, \end{displaymath} consisting of a [[product]] of a [[Cartesian space]] with an [[infinitesimally thickened point]], i.e. a formal dual of a \emph{Weil algebra} . Dually, the [[opposite category]] is the [[full subcategory]] $FormalCartSp^{op} \hookrightarrow SmoothAlg$ of [[smooth algebras]] on those of the form \begin{displaymath} C^\infty( \mathbb{R}^k \times \ell W) = C^\infty(\mathbb{R}^k) \otimes W \,. \end{displaymath} \end{defn} This appears for instance in \hyperlink{KockReyes}{Kock Reyes (1)}. \begin{defn} \label{}\hypertarget{}{} Define a structure of a [[site]] on [[FormalCartSp]] by declaring a [[covering]] family to be a family of the form \begin{displaymath} \{ U_i \times \ell W \stackrel{p_i \times Id}{\to} U \times \ell W \} \end{displaymath} where $\{U_i \stackrel{p_i}{\to} U\}$ is an [[open cover]] of the [[Cartesian space]] $U$ by Cartesian spaces $U_i$. \end{defn} This appears as \hyperlink{Kock}{Kock (5.1)}. \begin{defn} \label{}\hypertarget{}{} The \textbf{Cahiers topos} $\mathcal{CT}$ is the [[category of sheaves]] on this site: \begin{displaymath} \mathcal{CT} := Sh(FormalCartSp) \,. \end{displaymath} \end{defn} This site of definition appears in \hyperlink{KockReyes}{Kock, Reyes}. The original definition is due to \hyperlink{Dubuc79}{Dubuc 79} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{synthetic_differential_geometry_2}{}\subsubsection*{{Synthetic differential geometry}}\label{synthetic_differential_geometry_2} \begin{prop} \label{ModelForSynthetic}\hypertarget{ModelForSynthetic}{} The Cahiers topos is a well-adapted model for [[synthetic differential geometry]]. \end{prop} This is due to \hyperlink{Dubuc79}{Dubuc 79}. \hypertarget{connectedness_locality_and_cohesion}{}\subsubsection*{{Connectedness, locality and cohesion}}\label{connectedness_locality_and_cohesion} \begin{prop} \label{}\hypertarget{}{} The Cahiers topos is a [[cohesive topos]]. See [[synthetic differential infinity-groupoid]] for details. \end{prop} \hypertarget{ConvenientVectorSpaces}{}\subsubsection*{{Convenient vector spaces}}\label{ConvenientVectorSpaces} \begin{prop} \label{}\hypertarget{}{} The [[category]] of [[convenient vector spaces]] with [[smooth functions]] between them embeds as a [[full subcategory]] into the Cahiers topos. The embedding is given by sending a convenient vector space $V$ to the sheaf given by \begin{displaymath} V : \mathbb{R}^k \times \ell W \mapsto C^\infty(\mathbb{R}^k, V) \otimes W \,. \end{displaymath} \end{prop} This result was announced in \hyperlink{Kock}{Kock}. See the corrected proof in (\hyperlink{KockReyes}{KockReyes}). \begin{remark} \label{}\hypertarget{}{} Together with prop. \ref{ModelForSynthetic} this means that the [[differential geometry]] on convenient vector spaces may be treated synthetically in the Cahiers topos. \end{remark} \hypertarget{synthetic_tangent_bundles_of_smooth_spaces}{}\subsubsection*{{Synthetic tangent bundles of smooth spaces}}\label{synthetic_tangent_bundles_of_smooth_spaces} \hypertarget{RelationToSyntheticTangentSpaces}{}\subsubsection*{{Synthetic tangent spaces}}\label{RelationToSyntheticTangentSpaces} We discuss here induced [[synthetic tangent spaces]] of [[smooth spaces]] in the sense of [[diffeological spaces]] and more general [[sheaves]] on the site of [[smooth manifolds]] after their canonical embedding into the Cahiers topos. \begin{defn} \label{}\hypertarget{}{} Write $SmoothLoc$ for the [[category]] of [[smooth loci]]. Write \begin{displaymath} CartSp \hookrightarrow SmoothLoc \end{displaymath} for the [[full subcategory]] on the [[Cartesian spaces]] $\mathbb{R}^n$ ($n \in \mathbb{N}$). Write \begin{displaymath} InfThPoint \hookrightarrow SmoothLoc \end{displaymath} for the [[full subcategory]] on the [[infinitesimally thickened points]], and write \begin{displaymath} CartSp_{synthdiff} \hookrightarrow SmoothLoc \end{displaymath} for the full subcategory on those smooth loci which are the [[cartesian product]] of a [[Cartesian space]] $\mathbb{R}^n$ ($n \in \mathbb{N}$) and an [[infinitesimally thickened point]]. We regard [[CartSp]] as a [[site]] by equipping it with the [[good open cover]] [[coverage]]. We regard $InfThPoint$ as equipped with the trivial coverage and $CartSp_{synthdiff}$ as equipped with the induced product coverage. The [[sheaf topos]] $Sh(CartSp)$ is that of \emph{[[smooth spaces]]}. The sheaf topos $Sh(CartSp_{synthdiff})$ is the \emph{Cahier topos}. \end{defn} \begin{example} \label{InfinitesimalInterval}\hypertarget{InfinitesimalInterval}{} We write \begin{displaymath} D \coloneqq \ell(\mathbb{R}[\epsilon]/(\epsilon^2)) \in InfThPt \hookrightarrow CartSp_{synthdiff} \end{displaymath} for the [[infinitesimal space|infinitesimal interval]], the [[smooth locus]] dual to the [[smooth algebra]] ``[[ring of dual numbers|of dual numbers]]''. \end{example} \begin{defn} \label{SyntheticTangentBundle}\hypertarget{SyntheticTangentBundle}{} For $X \in Sh(CartSp_{synthdiff})$ any object in the Cahier topos, its \textbf{[[synthetic tangent bundle]]} in the sense of [[synthetic differential geometry]] is the [[internal hom]] space $X^D$, equipped with the projection map \begin{displaymath} X(\ast \to D) \colon X^D \to X \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The canonical inclusion functor $i \colon CartSp \to CartSp_{synthdiff}$ induces an [[adjoint pair]] \begin{displaymath} Sh(CartSp) \stackrel{\overset{i_!}{\to}}{\underset{i^\ast}{\leftarrow}} Sh(CartSp_{synthdiff}) \end{displaymath} where $i^\ast$ is given by precomposing a [[presheaf]] on $CartSp_{synthdiff}$ with $i$. The [[left adjoint]] $i_!$ has the interpretation of the inclusion of [[smooth spaces]] as [[reduced objects]] in the Cahiers topos. \end{prop} This is discussed in more detail at \emph{[[synthetic differential infinity-groupoid]]}. \begin{prop} \label{CharacterizationOfImageInCahiersTopos}\hypertarget{CharacterizationOfImageInCahiersTopos}{} For $X \in Sh(CartSp)$ a [[smooth space]], and for $\ell(W) \in InfThPoint$ an infinitesimally thickened point, the morphisms \begin{displaymath} \ell(W) \to i_! X \end{displaymath} in $Sh(CartSp_{synthdiff})$ are in natural [[bijection]] to [[equivalence classes]] of pairs of morphisms \begin{displaymath} \ell(W) \to \mathbb{R}^n \to X \end{displaymath} consisting of a morphism in $CartSp_{synth}$ on the left and a morphism in $Sh(CartSp)$ on the right (which live in different categories and hence are not composable, but usefully written in juxtaposition anyway). The [[equivalence relation]] relates two such pairs if there is a [[smooth function]] $\phi \colon \mathbb{R}^n \to \mathbb{R}^{n'}$ such that in the diagram \begin{displaymath} \itexarray{ && \mathbb{R}^n \\ & \nearrow & & \searrow \\ \ell(W) && \downarrow^{\mathrlap{\phi}} && X \\ & \searrow && \nearrow \\ && \mathbb{R}^{n'} } \end{displaymath} the left triangle commutes in $CartSp_{synthdiff}$ and the right one in $Sh(CartSp)$. \end{prop} \begin{proof} By general properties of [[left adjoints]] of functors of [[presheaves]], $i_! X$ is the [[left Kan extension]] of the presheaf $X$ along $i$. By the [[Yoneda lemma]] and the [[coend]] formula for these (as discussed there), we have that the set of maps $\ell(W) \to i_! X$ is naturally identified with \begin{displaymath} (i_! X)(\ell(W)) = (Lan_i X)(\ell(W)) = \int^{\mathbb{R}^n \in CartSp} Hom_{CartSp_{synthdiff}}(\ell(W), \mathbb{R}^n) \times X(\mathbb{R}^n) \,. \end{displaymath} Unwinding the definition of this [[coend]] as a [[coequalizer]] yields the above description of equivalence classes. \end{proof} \hypertarget{variants_and_generalizations}{}\subsection*{{Variants and generalizations}}\label{variants_and_generalizations} \begin{itemize}% \item When restricting the [[site]] of infinitesimally thickened Cartesian spaces to that of plain [[Cartesian spaces]] one obtaines the topos discussed at \emph{[[smooth space]]}. This is still a [[cohesive topos]], but no longer a model for [[synthetic differential geometry]]. \item The [[(∞,1)-sheaf (∞,1)-topos]] over $CartSp_{th}$ is disucssed at [[synthetic differential ∞-groupoid]]. It contains that Cahiers topos as the sub-[[(n,1)-topos|(1,1)-topos]] of [[0-truncated]] objects. \item [[Dubuc topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The Cahiers topos was introduced in \begin{itemize}% \item [[Eduardo Dubuc]], \emph{Sur les mod\`e{}les de la g\'e{}om\'e{}trie diff\'e{}rentielle synth\'e{}tique} [[Cahiers]] de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 20 no. 3 (1979), p. 231-279 (\href{http://www.numdam.org/item?id=CTGDC_1979__20_3_231_0}{numdam}). \end{itemize} and got its name from this journal publication. The definition appears in theorem 4.10 there, which asserts that it is a well-adapted model for [[synthetic differential geometry]]. A review discussion is in section 5 of \begin{itemize}% \item [[Anders Kock]], \emph{Convenient vector spaces embed into the Cahiers topos}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 27 no. 1 (1986), p. 3-17 (\href{http://www.numdam.org/item?id=CTGDC_1986__27_1_3_0}{numdam}) \end{itemize} and with a corrected definition of the site of definition in \begin{itemize}% \item [[Anders Kock]], [[Gonzalo Reyes]], \emph{Corrigendum and addenda to: Convenient vector spaces embed into the Cahiers topos}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 27 no. 1 (1986), p. 3-17 (\href{http://www.numdam.org/item?id=CTGDC_1987__28_2_99_0}{numdam}) \end{itemize} It appears briefly mentioned in example 2) on p. 191 of the standard textbook \begin{itemize}% \item [[Anders Kock]], \emph{Synthetic differential geometry} (\href{http://home.imf.au.dk/kock/sdg99.pdf}{pdf}) \end{itemize} With an eye towards [[Frölicher space]]s the site is also considered in section 5 of \begin{itemize}% \item Hirokazu Nishimura, \emph{Beyond the Regnant Philosophy of Manifolds} (\href{http://arxiv.org/abs/0912.0827}{arXiv:0912.0827}) \end{itemize} The [[(∞,1)-topos]] analog of the Cahiers topos ([[synthetic differential ∞-groupoids]]) is discussed in section 3.4 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} \end{document}