\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Calabi-Yau category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{1categorical}{1-categorical}\dotfill \pageref*{1categorical} \linebreak \noindent\hyperlink{categorical}{$(\infty,1)$-categorical}\dotfill \pageref*{categorical} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{FromCYVarieties}{From Calabi-Yau varieties}\dotfill \pageref*{FromCYVarieties} \linebreak \noindent\hyperlink{from_symplectic_manifolds}{From symplectic manifolds}\dotfill \pageref*{from_symplectic_manifolds} \linebreak \noindent\hyperlink{from_string_topology}{From string topology}\dotfill \pageref*{from_string_topology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classification_of_2d_tqft}{Classification of 2d TQFT}\dotfill \pageref*{classification_of_2d_tqft} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Calabi-Yau category} is a [[horizontal categorification]] of that of [[Frobenius algebra]] -- a \emph{Frobenius [[algebroid]]} . Their name derives from the fact that the definition of Calabi-Yau categories have been originally studied as an abstract version of the [[derived category]] of [[coherent sheaves]] on a [[Calabi-Yau manifold]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{1categorical}{}\subsubsection*{{1-categorical}}\label{1categorical} A \textbf{Calabi-Yau category} is a [[Vect]]-[[enriched category]] $C$ equipped for each object $c \in C$ with a [[trace]]-like map \begin{displaymath} Tr_C : C(c,c) \to k \end{displaymath} to the ground field, such that for all objects $d \in C$ the induced pairing \begin{displaymath} \langle -,-\rangle_{c,d} : C(c,d) \otimes C(d,c) \to k \end{displaymath} given by \begin{displaymath} \langle f,g \rangle = Tr(g \circ f) \end{displaymath} is symmetric and non-degenerate. Question: this 1-categorical definition seems to allow for different Frobenius structures on the endomorphism algebras of isomorphic objects. Would it be better to define it as a dinatural transformation from the Hom-functor to the constant functor with value the ground field $k$? A Calabi-Yau category with a single object is the same (or rather: is equivalently the [[pointed object|pointed]] [[monoid]] [[delooping]]) of a [[Frobenius algebra]]. \hypertarget{categorical}{}\subsubsection*{{$(\infty,1)$-categorical}}\label{categorical} A \textbf{Calabi-Yau $A_\infty$-category} of \emph{dimension} $d \in \mathbb{N}$ is an [[A-∞ category]] $C$ equipped with, for each pair $a,b$ of [[object]]s, a morphism of [[chain complex]]es \begin{displaymath} \langle -,-\rangle_{a,b} : C(a,b) \otimes C(b,a) \to k[d] \end{displaymath} such that \begin{enumerate}% \item this is non-degenerate and is symmetric in that \begin{displaymath} \langle - , - \rangle_{a,b} = \langle - , - \rangle_{b,a} \circ \sigma_{a,b} \end{displaymath} for $\sigma_{a,b} : C(a,b)\otimes C(b,a) \to C(b,a) \otimes C(a,b)$ the symmetry [[isomorphism]] of the [[symmetric monoidal category]] of [[chain complex]]es; \item this is cyclically invariant in that for all elements $(\alpha_i)$ is the respective hom-complexes we have \begin{displaymath} \langle m_{n-1}(\alpha_0 \otimes \cdots \otimes \alpha_{n-2}), \alpha_{n-1} \rangle = (-1)^{(n+1)+ |\alpha_0| \sum_{i = 1}^{n-1}|\alpha_i|} \langle m_{n-1}(\alpha_1 \otimes \cdots \otimes \alpha_{n-2}), \alpha_0 \rangle \,. \end{displaymath} \end{enumerate} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{FromCYVarieties}{}\subsubsection*{{From Calabi-Yau varieties}}\label{FromCYVarieties} \begin{itemize}% \item Let $X$ be a smooth projective [[Calabi-Yau variety]] of dimension $d$. Write $D^b(X)$ for the bounded [[derived category]] of that of [[coherent sheaves]] on $X$. Then $D^b(X)$ is a CY $A_\infty$-category in a naive way: \begin{itemize}% \item the non-binary composition maps are all trivial; \item the pairing is given by [[Serre duality]] (one needs also a choice of trivialization of the canonical bundle of $X$) \end{itemize} \end{itemize} This is however not the morally correct CY $A_\infty$-structure associated with a Calabi-Yau. A correct choice is, for example, the [[Dolbeault cohomology|Dolbeault]] [[enhanced triangulated category|dg-enhancement]] of the derived category (\hyperlink{Costello04}{Costello 04, 7.2}, \hyperlink{Costello05}{Costello 05, 2.2}) \hypertarget{from_symplectic_manifolds}{}\subsubsection*{{From symplectic manifolds}}\label{from_symplectic_manifolds} The [[Fukaya category]] associated with a [[symplectic manifold]] $X$. But see \href{http://mathoverflow.net/questions/13114/are-fukaya-categories-calabi-yau-categories}{this MO discussion} for more. \hypertarget{from_string_topology}{}\subsubsection*{{From string topology}}\label{from_string_topology} [[string topology]]: for $X$ a [[compact space|compact]] [[simply connected]] [[orientation|oriented]] [[manifold]], its cohomology $H^{\bullet}(X)$ is naturally a Calabi-Yau $A_\infty$-category with a single object. The $A_\infty$ structure comes from the [[homological perturbation lemma]]. One could also use the dg algebra of cochains $C^\bullet(X)$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{classification_of_2d_tqft}{}\subsubsection*{{Classification of 2d TQFT}}\label{classification_of_2d_tqft} Calabi-Yau $A_\infty$-categories classify [[TCFT]]s. This remarkable result is what actually one should expect. Indeed, TCFTs originally arose as an abstract version of the [[CFT]]s constructed from [[sigma-model]]s whose targets are [[Calabi-Yau spaces]]. [[!include 2d TQFT -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Calabi-Yau object]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Kevin Costello]], \emph{Topological conformal field theories and Calabi-Yau categories} (\href{http://arxiv.org/abs/math/0412149}{arXiv:math/0412149}) \item [[Kevin Costello]], \emph{The Gromov-Witten potential associated to a TCFT} (\href{http://arxiv.org/abs/math/0509264}{arXiv:0509264}) \item [[Maxim Kontsevich]], [[Yan Soibelman]]. \emph{Notes on A-infinity algebras, A-infinity categories and non-commutative geometry} $<$http://arxiv.org/abs/math/0606241{\tt \symbol{62}} \item Lee Cho, \emph{Notes on Kontsevich-Soibelman's theorem about cyclic A-infinity algebras} (\href{http://arxiv.org/abs/1002.3653}{arXiv:1002.3653}) \item [[Jacob Lurie]], section 4.2 of \emph{[[On the Classification of Topological Field Theories]]} (\href{http://arxiv.org/abs/0905.0465}{arXiv:0905.0465}) \end{itemize} [[!redirects Calabi-Yau category]] [[!redirects Calabi-Yau categories]] [[!redirects Calabi?Yau category]] [[!redirects Calabi?Yau categories]] [[!redirects Calabi--Yau category]] [[!redirects Calabi--Yau categories]] [[!redirects CY category]] [[!redirects CY categories]] [[!redirects CY-category]] [[!redirects CY-categories]] [[!redirects Calabi-Yau A-infinity category]] [[!redirects Calabi-Yau A-infinity categories]] [[!redirects Calabi-Yau A-infinity-category]] [[!redirects Calabi-Yau A-infinity-categories]] [[!redirects Calabi-Yau A-∞ category]] [[!redirects Calabi-Yau A-∞ categories]] [[!redirects Calabi-Yau A-∞-category]] [[!redirects Calabi-Yau A-∞-categories]] \end{document}