\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cartesian fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{general_properties}{General properties}\dotfill \pageref*{general_properties} \linebreak \noindent\hyperlink{BehaviourUnderPullback}{Behaviour under pullback}\dotfill \pageref*{BehaviourUnderPullback} \linebreak \noindent\hyperlink{relation_to_other_kinds_of_fibrations}{Relation to other kinds of fibrations}\dotfill \pageref*{relation_to_other_kinds_of_fibrations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{cartesian_fibrations_over_one_morphism_and_adjunctions}{Cartesian fibrations over one morphism and Adjunctions}\dotfill \pageref*{cartesian_fibrations_over_one_morphism_and_adjunctions} \linebreak \noindent\hyperlink{CartOverSimplex}{Cartesian fibrations over simplices}\dotfill \pageref*{CartOverSimplex} \linebreak \noindent\hyperlink{the_universal_cartesian_fibration}{The universal Cartesian fibration}\dotfill \pageref*{the_universal_cartesian_fibration} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Cartesian fibrations are one of the types of [[fibrations of quasi-categories]]. A \emph{Cartesian fibration} of quasi-categories -- or more generally of [[simplicial set]]s -- is a morphism that generalizes the notion of [[Grothendieck fibration]] from [[category theory]] to [[(∞,1)-category theory]], specifically with [[(∞,1)-categories]] incarnated as [[quasi-categories]]: It is an [[inner fibration]] that lifts also all right \emph{outer} [[horn]] inclusions whose last edge is a [[cartesian morphism]], and such that there is a sufficient supply of [[cartesian morphisms]]. An [[inner fibration]] $p : C \to D$ may be thought of as a family of [[(infinity,1)-categories]] $(C_d)_{d \in D}$ which is [[functorial]] in $d$ only in the sense of [[correspondences]]. Then the condition of $p$ being a cartesian fibration ensures that the family is actually [[functorial]]. More precisely, if an [[(∞,1)-functor]] $p : C \to D$ is a Cartesian fibration, then it is possible to interpret its value over any [[morphism]] $f : d_1 \to d_2$ in $D$ as an [[(∞,1)-functor]] $p^{-1}(f) : p^{-1}(d_2) \to p^{-1}(d_1)$ between the [[fibers]] $p^{-1}(d_2)$ and $p^{-1}(d_1)$ over its source and target [[objects]]. This way a Cartesian fibration $p : C \to D$ determines and is determined by an [[(∞,1)-functor]] $D^{op} \to (\infty,1)Cat$ into the [[(∞,1)-category of (∞,1)-categories]]. This is the content of the [[(∞,1)-Grothendieck construction]]. Cartesian fibrations over $S$ are the fibrant objects in the [[model structure on marked simplicial over-sets]] over $S$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} A morphism $p : X \to Y$ in [[sSet]] is a \textbf{Cartesian fibration} (or \textbf{Grothendieck fibration}) if \begin{itemize}% \item it is an [[inner fibration]] \item for every edge $f : x \to y$ of $Y$ and for every lift $\hat {y}$ of $y$ (that is: $p(\hat{y})=y$) there is a [[cartesian morphism|Cartesian edge]] $\hat{f} : \hat{x} \to \hat{y}$ in $X$ lifting $f$ (that is: such that $p(\hat f) = f$) \end{itemize} The morphism is a \textbf{cocartesian fibration} (or \textbf{Cartesian opfibration}, \textbf{Grothendieck opfibration}) if the [[opposite quasi-category|opposite]] $p^{op} : X^{op} \to Y^{op}$ is a Cartesian fibration. \end{udefn} This is [[Higher Topos Theory|HTT, def. 2.4.2.1]]. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{general_properties}{}\subsubsection*{{General properties}}\label{general_properties} \begin{uprop} We have: \begin{itemize}% \item Every [[isomorphism]] of [[simplicial sets]] is a Cartesian fibration. \item The composite of two Cartesian fibrations is again a Cartesian fibration. \end{itemize} \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.4.2.3 ]]. \end{proof} \begin{uprop} Every Cartesian fibration is a fibration in the [[Andre Joyal|Joyal]]-[[model structure for quasi-categories]]. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 3.3.1.7]]. \end{proof} \hypertarget{BehaviourUnderPullback}{}\subsubsection*{{Behaviour under pullback}}\label{BehaviourUnderPullback} Since a Cartesian fibration is in particular an [[inner fibration]] and since inner fibrations are stable under [[pullback]] in [[sSet]], it follows that for $p : E \to C$ a Cartesian fibration, the fiber $E_x$ over every point $x \in C_0$ is a [[quasi-category]] \begin{displaymath} \itexarray{ E_x &\to& E \\ \downarrow && \downarrow \\ \{x\} &\to& C } \,. \end{displaymath} The difference between inner fibrations and Cartesian fibrations is that only for Cartesian fibrations is it generally guaranteed that these fibers over the points are \emph{functorially} related over the morphisms in $C$. This is the content of the [[(∞,1)-Grothendieck construction]]. But moreover: \begin{uprop} The pullback of a Cartesian fibration in [[sSet]] is again a Cartesian fibration. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.4.2.3]]. We know from the discussion at [[inner fibration]] that the pullback is an inner fibration. It remains to check if it has enough [[Cartesian morphism]]s. By [[Higher Topos Theory|HTT, prop 2.4.1.3]] we have that in a [[pullback]] diagram \begin{displaymath} \itexarray{ E' &\stackrel{q}{\to}& E \\ {}^{\mathllap{p'}}\downarrow && \downarrow^{\mathrlap{p}} \\ C' &\stackrel{k}{\to}& C } \end{displaymath} a morphism $f \in E'$ is $p'$-Cartesian if $q(f)$ is $p$-Cartesian. Since the morphisms of $E'$ are pairs of morphisms $(\gamma, \hat f) \in C'_1 \times E_1$ and since by assumption $p$ is a Cartesian fibration, there is for $\gamma \in C'_1$ and $y \in E'_0$ such that $p'(y)$ is the target of the morphism $\gamma$ a Cartesian lift $\hat f \in E$ of $k(\gamma)$ such that $q(y)$ is the target of $\hat f$. Hence a Cartesian lift $(\gamma, \hat f)$ of $\gamma$ in $E'$ having $y$ as target. \end{proof} We can test locally if a morphism is a Cartesian fibration: \begin{uprop} An [[inner fibration]] $p : X \to Y$ is Cartesian precisely if for each $n \leq 2$ and for every $n$-[[simplex]] $\sigma : \Delta[n] \to Y$ the [[sSet]]-[[pullback]] $\sigma^* p : X \times_Y \Delta[n] \to \Delta[n]$ in \begin{displaymath} \itexarray{ X \times_Y \Delta[n] &\to& X \\ \downarrow && \downarrow^{\mathrlap{p}} \\ \Delta[n] &\stackrel{\sigma}{\to}& Y } \end{displaymath} is a Cartesian fibration. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, cor. 2.4.2.10]]. \end{proof} \begin{uprop} The [[pullback]] in [[sSet]] of a weak equivalence in the [[Andre Joyal|Joyal]]-[[model structure for quasi-categories]] along a Cartesian fibration is again a Joyal-weak equivalence \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 3.3.1.3]] \end{proof} \begin{ulemma} Equivalences in $sSet_{Joyal}$ are stable under pullback along Cartesian fibrations: if \begin{displaymath} \itexarray{ X \times_S T &\to & X \\ \downarrow && \downarrow \\ T &\stackrel{\simeq}{\to}& S } \end{displaymath} is a [[pullback]] square in [[sSet]] with $T \to S$ a weak equivalence in $sSet_{Joyal}$ and $X \to S$ a Cartesian fibration, then $X \times_S T \to X$ is also a weak equivalence. \end{ulemma} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 3.3.1.3]]. \end{proof} The following proposition asserts that the ordinary pullback (in [[sSet]]) of Cartesian fibrations already models the correct [[homotopy pullback]]. \begin{uprop} Let \begin{displaymath} \itexarray{ X &\to& X' \\ \downarrow && \downarrow \\ S &\to & S' } \end{displaymath} be an [[pullback]] [[diagram]] in [[sSet]] of quasi-categories, where $X' \to S'$ is a Cartesian fibration. Then this is already a [[homotopy pullback]] diagram with respect to the [[model structure for quasi-categories]]. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 3.3.1.4]]. We factor the bottom morphism as $S \stackrel{\simeq}{\to} T \to S'$ into a weak equivalence and a fibration in $sSet_{Joyal}$. Then the right square in \begin{displaymath} \itexarray{ X &\to& T \times_{S'} X'& \to& X' \\ \downarrow && \downarrow && \downarrow \\ S &\to & T &\to& S' } \end{displaymath} is the ordinary pullback over a fibrant replacement of the original diagram hence is a homotopy pullback. The claim follows thus if $X \to T \times_{S'} X'$ is a weak equivalence, which it is by one of the above lemmas. \end{proof} \hypertarget{relation_to_other_kinds_of_fibrations}{}\subsubsection*{{Relation to other kinds of fibrations}}\label{relation_to_other_kinds_of_fibrations} The notion of [[right fibration]] is a special case of that of Cartesian fibration: \begin{uprop} The following are equivalent: \begin{itemize}% \item $p : X \to Y$ is a Cartesian fibration and every edge in $X$ is $p$-Cartesian \item $p$ is a [[right fibration]]; \item $p$ is a Cartesian fibration and every fiber is a [[Kan complex]]. \end{itemize} \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.4.2.4]]. \end{proof} There are also the ``categorical fibrations'', the fibrations in the Joyal [[model structure for quasi-categories]] on $sSet$. These turn out not to have much of an intrinsic category theoretic meaning. By the following proposition one can understand the notion of Cartesian fibration as a suitable refinement of the notion of categorical fibration \begin{uprop} Every Cartesian fibration $p : X \to Y$ in [[sSet]] is a fibration with respect to the [[Andre Joyal|Joyal]] [[model structure for quasi-categories]] on [[sSet]]. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 3.3.1.7]]. \end{proof} However, when the base is an $\infty$-groupoid, then the difference between Cartesian fibrations and categorical fibrations disappears: \begin{uprop} Let $p : X \to Y$ be a morphism of [[simplicial set]]s where $Y$ is a [[Kan complex]]. Then the following are equivalent: \begin{enumerate}% \item $p$ is a Cartesian fibration \item $p$ is a coCartesian fibration \item $p$ is a [[Joyal model structure on simplicial sets|categorical fibration]] \end{enumerate} \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 3.3.1.8]]. \end{proof} There is however another [[model category]] structure, which does model Cartesian fibrations. \begin{uprop} Let $sSet^+/S$ be the [[overcategory]] of the category of [[marked simplicial set]]s over $S$, equipped with the [[model structure on marked simplicial over-sets]]. An object $X \to S$ is fibrant in that model category precisely if \begin{itemize}% \item the underlying morphism of simplicial sets $X \to S$ is a Cartesian fibration; \item the marked edges in $X$ are precisely the [[Cartesian morphism]]s. \end{itemize} \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 3.1.4.1]]. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{cartesian_fibrations_over_one_morphism_and_adjunctions}{}\subsubsection*{{Cartesian fibrations over one morphism and Adjunctions}}\label{cartesian_fibrations_over_one_morphism_and_adjunctions} By the [[(infinity,1)-Grothendieck construction]] a Cartesian fibration $K \to \Delta[1]$ corresponds to a morphism $\Delta[1]^{op} \to (\infty,1)Cat$, hence to an [[(infinity,1)-functor]] $f : C \to D$. Obtaining this through the straightening functor above is tedious, but there is a more immediate way to characterize $f$: \begin{udef} For $p : K \to \Delta[1]$ a Cartesian fibration with specified equivalences \begin{displaymath} h_0 : C \stackrel{\simeq}{\to} p^{-1}(0) \end{displaymath} and \begin{displaymath} h_1 : D \stackrel{\simeq}{\to} p^{-1}(1) \end{displaymath} an [[(infinity,1)-functor]] $f : D \to C$ is \textbf{associated} to $p$ if there exists a commuting diagram \begin{displaymath} \itexarray{ D \times \Delta[1] &&\stackrel{s}{\to}&& K \\ & \searrow && \swarrow \\ && \Delta[1] } \end{displaymath} such that \begin{itemize}% \item $s|_{D \times \{1\}} = h_1$; \item $s|_{D \times \{0\}} = h_0 \circ f$ \item for every object $x$ of $D$ we have that $s|_{\{x\} \times \Delta[1]}$ is a p-[[Cartesian morphism]] of $K$. \end{itemize} \end{udef} This is [[Higher Topos Theory|HTT, def. 5.2.1.1]]. If $p : K \to \Delta[1]$ is both a Cartesian fibration as well as a coCartesian fibration, then it determines $(\infty,1)$-functors in both directions \begin{displaymath} C \stackrel{\leftarrow}{\to} D \,. \end{displaymath} Such a pair is a pair of [[adjoint (infinity,1)-functor]]s. \hypertarget{CartOverSimplex}{}\subsubsection*{{Cartesian fibrations over simplices}}\label{CartOverSimplex} \ldots{} for the moment see [[Higher Topos Theory|HTT, section 3.2.2]] \ldots{} \hypertarget{the_universal_cartesian_fibration}{}\subsubsection*{{The universal Cartesian fibration}}\label{the_universal_cartesian_fibration} for the moment see \begin{itemize}% \item [[universal fibration of (∞,1)-categories]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Kan fibration]], [[anodyne morphism]] \item [[right/left Kan fibration]], [[right/left anodyne map]] \item [[inner fibration]] \item \textbf{Cartesian fibration}, [[Cartesian fibration of dendroidal sets]] \item [[coCartesian fibration of (∞,1)-operads]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jacob Lurie]], ection 2.4.2 in \emph{[[Higher Topos Theory]]} \item [[Aaron Mazel-Gee]], \emph{A user's guide to co/cartesian fibrations} (\href{http://arxiv.org/abs/1510.02402}{arXiv:1510.02402}) \end{itemize} [[!redirects cartesian fibration]] [[!redirects coCartesian fibration]] [[!redirects co-cartesian fibration]] [[!redirects cocartesian fibration]] [[!redirects Cartesian fibrations]] [[!redirects cartesian fibrations]] [[!redirects coCartesian fibrations]] [[!redirects co-cartesian fibrations]] [[!redirects cocartesian fibrations]] \end{document}