\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cartesian morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{category_theory_2}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory_2} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_categories}{In categories}\dotfill \pageref*{in_categories} \linebreak \noindent\hyperlink{traditional_definition}{Traditional definition}\dotfill \pageref*{traditional_definition} \linebreak \noindent\hyperlink{CartInOrdCatReformulation}{Reformulations}\dotfill \pageref*{CartInOrdCatReformulation} \linebreak \noindent\hyperlink{in_categories_2}{In $(\infty,1)$-categories}\dotfill \pageref*{in_categories_2} \linebreak \noindent\hyperlink{in_quasicategories}{In quasi-categories}\dotfill \pageref*{in_quasicategories} \linebreak \noindent\hyperlink{in_categories_3}{In $sSet$-categories}\dotfill \pageref*{in_categories_3} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{pullback_along_cartesian_morphisms}{Pullback along Cartesian morphisms}\dotfill \pageref*{pullback_along_cartesian_morphisms} \linebreak \noindent\hyperlink{cartesian_morphisms_and_equivalences}{Cartesian morphisms and equivalences}\dotfill \pageref*{cartesian_morphisms_and_equivalences} \linebreak \noindent\hyperlink{variants}{Variants}\dotfill \pageref*{variants} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[functor]] $p\colon X \to Y$ between categories one may ask for each [[morphism]] $f\colon y_1 \to y_2$ if given a lift of its target \begin{displaymath} \itexarray{ X &&& && \hat y_2 \\ \downarrow^p \\ Y &&& y_1 &\stackrel{f}{\to}& y_2 } \end{displaymath} there is a \emph{universal} lift of $f$ \begin{displaymath} \itexarray{ X &&& \hat y_1 &\stackrel{\hat f}{\to}& \hat y_2 \\ \downarrow^p \\ Y &&& y_1 &\stackrel{f}{\to}& y_2 } \,. \end{displaymath} There may also be other lifts of $f$, but the universal one is essentially unique, as usual for anything having a [[universal property]]. Specifically, $\hat f$ in $X$ is essentially uniquely determined by its target $\hat y_2$ and its image $f = p(\hat f)$ in $Y$, and is called a \textbf{cartesian morphism}. A morphism which is cartesian relative to $p^{op}\colon X^{op}\to Y^{op}$ is called \textbf{opcartesian} or \textbf{cocartesian}. If there are enough cartesian morphisms in $Y$, they may be used to define [[functor]]s \begin{displaymath} f^* : X_{y_2} \to X_{y_1} \end{displaymath} between the [[fiber]]s of $p$ over $y_1$ and $y_2$. This way a functor $p : X \to Y$ with enough Cartesian morphisms -- called a [[Cartesian fibration]] or [[Grothendieck fibration]] -- determines and is determined by a fiber-assigning functor $Y \to Cat^{op}$. This has its analog in [[higher category theory|higher categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_categories}{}\subsubsection*{{In categories}}\label{in_categories} \hypertarget{traditional_definition}{}\paragraph*{{Traditional definition}}\label{traditional_definition} \begin{defn} \label{}\hypertarget{}{} \textbf{(cartesian morphism)} Let $p : X \to Y$ be a [[functor]]. A [[morphism]] $f : x_1 \to x_2$ in the [[category]] $X$ is \textbf{strongly cartesian} with respect to $p$ (nowdays often just \emph{cartesian}), or (strongly) \textbf{$p$-cartesian} if for every $x'\in X$, for every $h:x'\to x_2$ and every $u:p(x')\to p(x_1)$ such that $p(h) = p(f) u$, there exists a unique $v:x'\to x_1$ such that $h = f v$ and $u = p(v)$: \begin{displaymath} \itexarray{ \forall x' \\ \downarrow^{\mathrlap{\exists! v}} & \searrow^{\mathrlap{\forall h}} \\ x_1 &\stackrel{f}{\to}& x_2 } \;\;\; \;\;\; \stackrel{p}{\mapsto} \;\;\; \;\;\; \itexarray{ p(x') \\ \downarrow^{\mathrlap{\forall u}} & \searrow^{\mathrlap{p(h)}} \\ p(x_1) &\stackrel{p(f)}{\to}& p(x_2) } \end{displaymath} In imprecise words: for all commuting triangles in $Y$ (involving $p(f)$ as above) and all lifts through $p$ of its 2-[[horn]] to $X$ (involving $f$ as above), there is a unique refinement to a lift of the entire commuting triangle. There is a weaker universal property, originally devised by Grothendieck and Gabriel, where one requires above lifting property only for $u = id_{p(x_1)}$, and traditionally also called simply cartesian, or rarely weak cartesian. In Grothendieck's [[fibered categories]] (see below), cartesian in the strong sense and cartesian in the weak sense are equivalent properties of morphisms. If we pass to the [[nerve]] $N(X)$ and $N(Y)$ of the categories, then in terms of diagrams in [[sSet]] this means that the morphism $f : x \to y$ is $p$-cartesian precisely if for all [[horn]] inclusions \begin{displaymath} \itexarray{ \Delta^{\{1,2\}} \\ \downarrow & \searrow^f \\ \Lambda_2[2] &\to& N(X) \\ \downarrow && \downarrow^{\mathrlap{p}} \\ \Delta[2] &\to& N(Y) } \end{displaymath} such that the last edge of the 2-[[horn]] is the given edge $f$, a unique lift $\sigma$ \begin{displaymath} \itexarray{ \Delta^{\{1,2\}} \\ \downarrow & \searrow^f \\ \Lambda_2[2] &\to& N(X) \\ \downarrow &{}^\sigma\nearrow& \downarrow^{\mathrlap{p}} \\ \Delta[2] &\to& N(Y) } \end{displaymath} exists. \end{defn} \begin{defn} \label{}\hypertarget{}{} \textbf{(Grothendieck fibration)} If for every morphism in $Y$ and every lift of its target there is at least one lift which has as its target the chosen one and is a $p$-cartesian morphism in the strong sense, one says that $p$ is a \textbf{fibered category} (also called [[Grothendieck fibration]]). Equivalently, \begin{itemize}% \item ($p$ is [[prefibered category]]) for every morphism in $Y$ and every lift of its target there is at least one lift through $p$ which has as its target the chosen one and is a $p$-cartesian morphism in the weak sense \end{itemize} \emph{and} \begin{itemize}% \item the composition of every two composable $p$-cartesian morphisms (in the weak sense) is a $p$-cartesian morphism (in the weak sense). \end{itemize} \end{defn} \hypertarget{CartInOrdCatReformulation}{}\paragraph*{{Reformulations}}\label{CartInOrdCatReformulation} We discuss equivalent reformulations of the above definition of Cartesian morphism that lend themselves better to generalization to [[higher category theory]]. For the following, we need this notation: let \begin{itemize}% \item $X/x_2$ by the [[overcategory]] of $X$ over the object $x_2$; \item $Y/p(x_2)$ the corresponding [[overcategory]] of $Y$ over $p(x_2)$; \item $X/f$ the category whose objects \begin{displaymath} Obj(X/f) = \left\{ \itexarray{ && a \\ &\swarrow && \searrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \right\} \end{displaymath} are objects $a$ of $X$ eqipped with morphisms to $x_1$ and $x_2$ such that the obvious triangle commutes, and whose morphisms are morphisms between these tip objects such that all diagrams in sight commute. \item similarly for $Y/p(f)$. \end{itemize} \begin{prop} \label{}\hypertarget{}{} The condition that $f \in Mor X$ is a Cartesian morphism with respect to $p : X \to Y$ is equivalent to the condition that the functor \begin{displaymath} \phi : X/f \to X/{x_2} \times_{Y/{p(x_2)}} Y/p(f) \end{displaymath} into the (strict) [[pullback]] of the obvious projection $X/{x_2} \to Y/p(x_2)$ along the projection $Y/p(f) \to Y/p(x_2)$ induced by the commutativity of \begin{displaymath} \itexarray{ X/f &\stackrel{\phi_2}{\to}& Y/p(f) \\ {}^{\mathllap{\phi_1}}\downarrow && \downarrow \\ X/{x_2} &\to& Y/{p(x_2)} } \end{displaymath} is a [[k-surjective functor|surjective equivalence]], and this in turn is equivalent to it being an [[isomorphism]] of categories. \end{prop} \begin{proof} It is immediate to see that $\phi$ being an isomorphism of categories is equivalent to the condition that $f$ is a Cartesian morphism. We discuss that just the condition that $\phi$ is a surjective equivalence already implies that it is an isomorphism of categories. So assume now that $\phi$ is a surjective equivalence. Notice that objects in the pullback category are compatible pairs \begin{displaymath} \left( \left( \itexarray{ && a \\ &&& \searrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \right) \in X/_{x_2} \;\;\;\;\;\;\,,\;\;\;\;\;\; \left( \itexarray{ && b \\ & \swarrow && \searrow \\ p(x_1) &&\stackrel{p(f)}{\to}&& p(x_2) } \right) \in Y/p(f) \right) \,. \end{displaymath} We have that $\phi$ being \emph{surjective} on object means that every such pair is in the image of some object \begin{displaymath} \left( \itexarray{ && a \\ &{}^{\mathllap{g}}\swarrow&& \searrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \right) \in X_{f} \,, \end{displaymath} and hence that every filler \emph{exists} . Assume two such fillers $g$ and $g'$. Then by the fact that an [[equivalence of categories]] is a surjection (even an isomorphism) on corresponding hom-sets, it follows that there exists (even uniquely) a morphism in $X/f$ connecting them \begin{displaymath} \itexarray{ && a \\ &{}^{\mathllap{g}}\swarrow & \downarrow^{\mathrlap{h}} & \searrow \\ && a \\ \downarrow & {}^{\mathllap{g'}}\swarrow && \searrow & \downarrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \end{displaymath} such that this maps under $\phi$ to the identity morphism in the pullback category. But in particular this maps to the morphism \begin{displaymath} \itexarray{ && a \\ && \downarrow^{\mathrlap{h}} & \searrow \\ && a \\ & && \searrow & \downarrow \\ &&&& x_2 } \end{displaymath} in $X/{x_2}$ and evidently is the identity there if and only if $h$ is the identity. Hence this maps also to the identity in the pullback category if and only if $h$ is the identity. So $h$ must be the identity. So if two lifts of an object through the surjective equivalence $\phi$ exist, they must already be equal. Hence the surjective equivalence $\phi$ is even an isomorphism on objects and hence an isomorphism of categories. \end{proof} \hypertarget{in_categories_2}{}\subsubsection*{{In $(\infty,1)$-categories}}\label{in_categories_2} The notion of cartesian morphism generalizes from [[category theory]] to [[(∞,1)-category theory]]. We describe it for two different incarnations of the notion of [[(∞,1)-category]]: [[quasi-categories]] and [[simplicially enriched categories|sSet categories]]. \hypertarget{in_quasicategories}{}\paragraph*{{In quasi-categories}}\label{in_quasicategories} We formulate a notion \textbf{cartesian edge} or \emph{cartesian morphism} in a [[simplicial set]] $X$ relative to a morphism $p : X \to Y$ of simplicial sets. In the case that these simplicial sets are [[quasi-category|quasi-categories]] -- i.e. simplicial set incarnations of [[(∞,1)-category|(∞,1)-categories]] -- this yields a notion of cartesian morphisms in $(\infty,1)$-categories. Let $p : X \to Y$ be a morphism of [[simplicial set]]s. Let $f : x_1 \to x_2$ be an edge in $X$, i.e. a morphism $f : \Delta^1 \to X$. Recall the notion of [[over quasi-category]] obtained from the notion of [[join of quasi-categories]]. Using this we obtain [[simplicial set]]s $X/f$, $X/{x_2}$, $S/p(f)$ and $S/p(x_2)$ in generalization of the categories considered in the above definition of cartesian morphisms in categories. \begin{defn} \label{}\hypertarget{}{} \textbf{(cartesian edge in a simplicial set)} Let $p : X \to Y$ be an [[inner Kan fibration]] of simplicial sets. Then a [[morphism]] $f : x \to y$ in $X$ is \textbf{$p$-cartesian} if the induced morphism \begin{displaymath} X_{/f} \to X_{/y} \times_{Y_{/p(y)}} Y_{/p(f)} \end{displaymath} into the [[pullback]] in [[sSet]] is an acyclic [[Kan fibration]]. \end{defn} This is [[Higher Topos Theory|HTT, def 2.4.1.1]]. \begin{prop} \label{}\hypertarget{}{} The morphism $f : x \to y$ as above, for $p : X \to Y$ an [[inner fibration]], is $p$-cartesian precisely if for all $n \geq 2$ and all right outer [[horn]] inclusions \begin{displaymath} \itexarray{ \Delta^{\{n-1,n\}} \\ \downarrow & \searrow^f \\ \Lambda[n]_n &\to& X \\ \downarrow && \downarrow^{\mathrlap{p}} \\ \Delta[n] &\to& Y } \end{displaymath} (with $\Lambda[n]_n$ the $n$th [[horn]] of the $n$-[[simplex]]) such that the last edge of the horn is the given edge $f$, a lift $\sigma$ \begin{displaymath} \itexarray{ \Delta^{\{n-1,n\}} \\ \downarrow & \searrow^f \\ \Lambda[n]_n &\to& X \\ \downarrow &{}^\sigma\nearrow& \downarrow^{\mathrlap{p}} \\ \Delta[n] &\to& Y } \end{displaymath} exists. \end{prop} This is [[Higher Topos Theory|HTT remark 2.4.1.4]]. \begin{remark} \label{}\hypertarget{}{} This means that an [[inner fibration]] $p : X \to Y$ with a collection of $p$-cartesian morphisms in $X$ specified satisfies the same kind of condition as a \emph{[[right fibration]]} , the only difference being that not \emph{all} right outer horns inclusion are required to have lifts, but only those where the last edge of the horn maps to a cartesian morphism. In this sense a [[Cartesian fibration]] is a generalization of a [[right fibration]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} If $p : X \to Y$ is an [[inner fibration]] of [[quasi-categories]] then a morphism $f : x \to y$ in $X$ is $p$-Cartesian precisely if for all objects $a$ in $X$ the diagram \begin{displaymath} \itexarray{ Hom_X(a,x) &\stackrel{Hom_X(a,f)}{\to}& Hom_X(a,y) \\ \downarrow && \downarrow \\ Hom_Y(p(a), p(x)) &\stackrel{Hom_Y(p(a), p(f))}{\to}& Hom_Y(p(a), p(y)) } \end{displaymath} of [[hom-object in a quasi-category|hom-objects in a quasi-category]] is a [[homotopy pullback]] square (in [[sSet]] equipped with its [[model structure on simplicial sets|standard model structure]]). \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.4.4.3]]. \end{proof} \hypertarget{in_categories_3}{}\paragraph*{{In $sSet$-categories}}\label{in_categories_3} Let $C$ and $D$ be [[simplicially enriched categories]] and $F : C \to D$ a [[sSet]]-[[enriched functor]]. \begin{defn} \label{}\hypertarget{}{} A morphism $f : x \to y \in C$ is \textbf{$F$-cartesian} if it is so under the [[homotopy coherent nerve]] $N : sSet Cat \to sSet$ in the sense of quasi-categories above, i.e. if \begin{displaymath} N(C)_{/f} \to N(C)_{/y} \times_{N(D)_{/F(y)}} N(D)_{/F(f)} \end{displaymath} is an acyclic [[Kan fibration]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} If $C$ and $D$ are enriched in [[Kan complex]]es and if $F$ is hom-wise a [[Kan fibration]], then \begin{itemize}% \item $N(F) : N(C) \to N(D)$ is an [[inner fibration]]; \item a morphism $f :x \to y$ in $N(C)$ is an $N(F)$-cartesian morphism precisely if for all objects $a$ in $C$ the diagram \begin{displaymath} \itexarray{ C(a,x) &\stackrel{C(a,f)}{\to}& C(a,y) \\ \downarrow && \downarrow \\ D(F(a), F(x)) &\stackrel{C(F(a), F(f))}{\to}& D(F(a), F(y)) } \end{displaymath} is a [[homotopy pullback]] square in [[sSet]] equipped with its [[model structure on simplicial sets|standard model structure]]. \end{itemize} \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.4.1.10]]. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{pullback_along_cartesian_morphisms}{}\subsubsection*{{Pullback along Cartesian morphisms}}\label{pullback_along_cartesian_morphisms} \begin{lemma} \label{}\hypertarget{}{} For $p : \mathcal{E} \to \mathcal{C}$ a functor, if in a diagram \begin{displaymath} \itexarray{ A &\stackrel{f}{\to}& B \\ {}^{\mathllap{g}}\downarrow && \downarrow^{\mathrlap{h}} \\ C &\stackrel{k}{\to}& D } \end{displaymath} in $\mathcal{E}$ the two vertical morphisms are vertical with respect to $p$ (meaning that $p(g) = Id_p(A)$ and $p(h) = Id(B)$) and if the two horizontal morphisms are $p$-Cartesian morphisms, then this square is a [[pullback]] square. \end{lemma} \begin{proof} If \begin{displaymath} \itexarray{ Q &\stackrel{}{\to}& B \\ \downarrow && \downarrow^{\mathrlap{h}} \\ C &\stackrel{k}{\to}& D } \end{displaymath} is another cone over $C \to D \leftarrow B$, then its image under $p$ is \begin{displaymath} \itexarray{ p(Q) \\ \downarrow & \searrow \\ p(C) &\stackrel{p(k)}{\to}& D } \,. \end{displaymath} Since $p(f) = p(k)$, another lift of the right horn of this is given by \begin{displaymath} \itexarray{ Q \\ & \searrow \\ A &\stackrel{f}{\to}& B } \end{displaymath} which gives a unique filler $Q \to A$ by the fact that $f$ is Cartesian. But this produces now two fillers -- namely the original $Q \to C$ and the $Q \to A \to C$ just obtained -- of the horn \begin{displaymath} \itexarray{ Q &\to& B \\ && \downarrow \\ C &\stackrel{k}{\to}& D } \end{displaymath} over \begin{displaymath} \itexarray{ p(Q) \\ \downarrow & \searrow \\ p(C) &\stackrel{p(k)}{\to}& D } \,. \end{displaymath} Since $k$ is Cartesian, these two fillers must be equal. This means that the morphism $Q \to A$ is a cone morphism and unique as such. Hence the original square is a pullback. \end{proof} This appears as [[Elephant|Elephant, lemma 1.3.3]]. \hypertarget{cartesian_morphisms_and_equivalences}{}\subsubsection*{{Cartesian morphisms and equivalences}}\label{cartesian_morphisms_and_equivalences} \begin{lemma} \label{}\hypertarget{}{} For $C$ a [[category]], a [[morphism]] in $C$ is cartesian with respect to the [[terminal object|terminal]] [[functor]] $C \to *$ precisely if it is an [[isomorphism]]. In particular all [[identity]] morphisms are cartesian. \end{lemma} This is trivial to see. The analog statement holds also for [[quasi-categories]], where it is rather more nontrivial and quite useful: \begin{prop} \label{}\hypertarget{}{} For $C$ a [[quasi-category]], a morphism in $C$ is cartesian with respect to the [[terminal object|terminal]] morphism $C \to *$ precisely if it is an [[equivalence in a quasi-category|equivalence]]. More generally, for $p : X \to Y$ an [[inner fibration]], a morphism $f$ in $X$ is an [[equivalence in a quasi-category|equivalence]] precisely if it is $p$-cartesian and $p(f)$ is an equivalence in $Y$. \end{prop} \begin{proof} The first statement is a proposition of [[Andre Joyal]], slightly reformulated in the language of cartesian morphisms. It appears as [[Higher Topos Theory|HTT, prop 1.2.4.3]]. A proof appears below [[Higher Topos Theory|HTT, corollary 2.1.2.2]]. The second statement is [[Higher Topos Theory|HTT, prop. 2.4.1.5]]. \end{proof} \hypertarget{variants}{}\subsection*{{Variants}}\label{variants} [[David Roberts]]: There would surely be an [[anafunctor]] version of this, that would require no choices whatsoever. It is unlikely that I would be able to find time to write this up, so my plea goes out to those in the know\ldots{} I imagine that there would then be an $(\infty,1)$-version using whatever passes as anafunctors in that setting (dratted memory, failing at the first gate) [[Mike Shulman]]: Yes, there would surely be such a version. (-: The simplest way would be to take the specifications $|f^*|$ for the anafunctor $f^*$ to be the cartesian morphisms over $f$, with domain and codomain giving the functions $\sigma$ and $\tau$. Unique factorization would give you the values of morphisms. [[David Roberts]]: just stumbled on this old comment - I'm reading Makkai more closely, and I'm convinced that basically anything defined by a universal property is given by a saturated anafunctor. So this is a heads up for posterity, that a map is a fibration iff the fairly obvious span of functors defines a [[saturated anafunctor]]. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item A Cartesian morphism is the special case of an [[initial lift]] of a structured [[cosink]] when the cosink is a singleton. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The traditional reference is SGA I.6 (written by [[P. Gabriel]] and A. Grothendieck) \begin{itemize}% \item chapter 6 in A. Grothendieck, M. Raynaud et al. \emph{Rev\^e{}tements \'e{}tales et groupe fondamental} ([[SGA1]]), Lecture Notes in Mathematics \textbf{224}, Springer 1971 (retyped as \href{http://arxiv.org/abs/math/0206203}{math.AG/0206203}; published version Documents Math\'e{}matiques \textbf{3}, Soci\'e{}t\'e{} Math\'e{}matique de France, Paris 2003) \end{itemize} There are excellent lectures of Vistoli: \begin{itemize}% \item [[Angelo Vistoli]], \emph{Grothendieck topologies, fibered categories and descent theory}, p. 1--104 in [[FGA explained]], \href{http://www.ams.org/mathscinet-getitem?mr=2223406}{MR2223406}; \href{http://arxiv.org/abs/math/0412512}{math.AG/0412512}. \end{itemize} For the 1-categorical case see for instance section B1.3 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} The $(\infty,1)$-categorical version is in section 2.4 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} See also the references at [[Grothendieck fibration]]. [[!redirects Cartesian morphism]] [[!redirects Cartesian morphisms]] [[!redirects cartesian morphism]] [[!redirects cartesian morphisms]] [[!redirects opcartesian morphism]] [[!redirects opcartesian morphisms]] [[!redirects cocartesian morphism]] [[!redirects coCartesian morphism]] [[!redirects coCartesian morphisms]] [[!redirects cocartesian morphisms]] [[!redirects cartesian arrow]] [[!redirects cartesian arrows]] [[!redirects Cartesian arrow]] [[!redirects Cartesian arrows]] [[!redirects opcartesian arrow]] [[!redirects opcartesian arrows]] [[!redirects opCartesian arrow]] [[!redirects opCartesian arrows]] \end{document}