\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cartier operator} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{notation}{Notation}\dotfill \pageref*{notation} \linebreak \noindent\hyperlink{the_cartier_isomorphism}{The Cartier Isomorphism}\dotfill \pageref*{the_cartier_isomorphism} \linebreak \noindent\hyperlink{relation_to_the_hodgede_rham_spectral_sequence}{Relation to the Hodge-de Rham Spectral Sequence}\dotfill \pageref*{relation_to_the_hodgede_rham_spectral_sequence} \linebreak \noindent\hyperlink{the_generalization_to_noncommutative_algebra}{The Generalization to Non-commutative algebra}\dotfill \pageref*{the_generalization_to_noncommutative_algebra} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{notation}{}\subsection*{{Notation}}\label{notation} For the following discussion we suppose $\pi: X\to S$ is a [[smooth scheme|smooth]] map of [[scheme]]s. Let $d:\mathcal{O}_X\to \Omega^1_{X/S}$ be the standard differential. It is an integrable [[flat connection|connection]] on $\mathcal{O}_X$. We'll define the (relative) de Rham cohomology to be the [[hyper-derived functor]] pushforward applied to the de Rham complex $\mathbf{R}^q\pi_*(\Omega_{X/S}^\bullet)$. We will denote the relative Frobenius map $F: X\to X^{(p)}$ where $X^{(p)}$ is the pullback of the structure map and the absolute Frobenius $F_{ab}: S\to S$, i.e. $X^{(p)}=X\otimes_{\pi^{-1}(\mathcal{O}_S)} \pi^{-1}(\mathcal{O}_S)$. If $\mathcal{A}^\bullet$ is a complex of sheaves, then we denote by $\mathcal{H}^q(\mathcal{A}^\bullet)$ the sheaf that is obtained by taking cohomology with respect to the maps of the complex. \hypertarget{the_cartier_isomorphism}{}\subsection*{{The Cartier Isomorphism}}\label{the_cartier_isomorphism} Suppose that $S$ is an $\mathbb{F}_p$-scheme and $X/S$ is smooth, then there is a unique map of graded $\mathcal{O}_{X^{(p)}}$-algebras $C^{-1}: \Omega^i_{X^{(p)}/S} \stackrel{\sim}{\to} \mathcal{H}^i(F_*\Omega^\bullet_{X/S})$ that satisfies: $C^{-1}(1)=1$, $C^{-1}(\omega\wedge \tau)=C^{-1}(\omega)\wedge C^{-1}(\tau)$ and $C^{-1}(dF_{ab}^{-1}(f))=[f^{p-1}df]$ in $\mathcal{H}^1(F_*\Omega^\bullet_{X/S})$. The inverse of this isomorphism is the traditional Cartier isomorphism. The construction is quite simple. First note that we can immediately reduce to constructing $C^{-1}$ for $i=1$. This is because if $C^{-1}(1)=1$ and $C^{-1}$ is $\mathcal{O}_{X^{(p)}}$-linear it is determined for $i=0$. Likewise, if $C^{-1}$ is determined for $i=1$, then the case $i\geq 1$ is determined from the second property. Now to construct for $i=1$ we just note that such a map is equivalent to a $(\pi^{(p)})^{-1}$-linear derivation $\mathcal{O}_{X^{(p)}}\to \mathcal{H}^1(F_*\Omega_{X/S}^\bullet)$. This is equivalent to defining a map on local sections $\delta: \mathcal{O}_X\times \pi^{-1}(\mathcal{O}_S)\to \mathcal{H}^1(\Omega_{X/S}^\bullet)$ that is biadditive and satisfies the extra three properties $\delta(fs, s')=\delta(f, s^ps')$, $\delta(gf, s)=g^p\delta(f,s)+f^p\delta(g,s)$ and $\delta(f,1)=[f^{p-1}df]$. Now define the map explicitly by $\delta(f,s)=[sf^{p-1}df]$. It can be checked that this map satisfies all the properties listed and is indeed an isomorphism. This is $C^{-1}$, the inverse of the Cartier isomorphism. \hypertarget{relation_to_the_hodgede_rham_spectral_sequence}{}\subsection*{{Relation to the Hodge-de Rham Spectral Sequence}}\label{relation_to_the_hodgede_rham_spectral_sequence} For this discussion let's assume that $X/k$ is proper and smooth. Deligne and Illusie had an insight that the degeneration of the Hodge-de Rham spectral sequence (HdR SS) is closely related to the Cartier isomorphism. Recall that the HdR SS is formed by taking the spectral sequence associated to hypercohomology $E_1^{p,q}=H^q(X, \Omega^p_{X/k})\Rightarrow H^{p+q}_{dR}(X/k)$. Now notice that if we form the complex $\bigoplus_{i}\Omega^i_{X^{(p)}}[-i]$ which is $\Omega^i$ in degree $i$ and $d=0$ everywhere, then the left side of the inverse Cartier isomorphism is exactly $\mathcal{H}^i(\bigoplus_{i}\Omega^i_{X^{(p)}}[-i])$. Likewise, the right side is $\mathcal{H}^i$ of the complex $F_*\Omega_{X/k}^\bullet$. We can think of both of these complexes as living in $\mathbf{D}(X^{(p)}):=\mathbf{D}^b_{qCoh}(X^{(p)})$. We can ask whether or not there is some map in the derived category $\phi: \bigoplus_{i}\Omega^i_{X^{(p)}}[-i] \to F_*\Omega_{X/k}^\bullet$ with the property that $\mathcal{H}^i(\phi)=C^{-1}$ for all $i$. It turns out this is a sufficient condition for convergence of the HdR SS. This is just because we get a string of isomorphisms $\mathbf{H}^n(X, \Omega_X^\bullet)=\mathbf{H}^n(X^{(p)}, F_*\Omega_X^\bullet)\simeq \bigoplus_{i} H^{n-i}(X^{(p)}, \Omega_X^i)$. Thus the dimensions of the $k$-vector spaces at the $E_1$ term match the dimensions at the $E_\infty$ term. Since everything is a $k$-vector space this is all that is needed for degeneration (there can be no non-trivial quotients without dimension decreasing). \hypertarget{the_generalization_to_noncommutative_algebra}{}\subsection*{{The Generalization to Non-commutative algebra}}\label{the_generalization_to_noncommutative_algebra} See Kaledin Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie \hypertarget{references}{}\subsection*{{References}}\label{references} Nilpotent Connections and the Monodromy Theorem by Nicholas M. Katz Relevements modulo $p^2$ et decomposition du complexe de de Rham by Deligne and Illusie =-- \end{document}