\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Categories and Sheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include mathematicscontents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] This entry provides a hyperlinked index for the book \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{Categories and Sheaves}, Grundlehren der Mathematischen Wissenschaften \textbf{332}, Springer (2006) \end{itemize} on basics of [[category theory]] and the foundations of [[homological algebra]] and [[abelian sheaf cohomology]]. See also the related lecture notes \begin{itemize}% \item [[Pierre Schapira]], \emph{Categories and homological algebra} (2011) (\href{http://people.math.jussieu.fr/~schapira/lectnotes/HomAl.pdf}{pdf}) \end{itemize} \textbf{Summary} The book discusses the theory of [[presheaf|presheaves]] and [[sheaf|sheaves]] with an eye towards their application in [[homological algebra]] and with an outlook on [[stack]]s. A self-contained introduction of the basics of [[presheaf]]-categories with detailed discussion of [[representable functor]]s and the corresponding notions of [[limit]]s, [[colimit]]s, [[adjoint functor]]s and [[ind-object]]s forms the first third of the book. The second part describes central concepts and tools of modern category-theoretic [[homological algebra]] in terms of [[derived category|derived]] [[triangulated category|triangulated categories]]. The last part merges these two threads in a discussion of [[sheaf|sheaves]] in general and [[abelian sheaf|abelian sheaves]] in particular. This provides the machinery for the consideration of [[abelian sheaf cohomology]] conceptually embedded into the general notion of [[cohomology]] and [[(infinity,1)-category of (infinity,1)-sheaves|higher stacks]], on which the last section provides an outlook. The organization and emphasis of the book (for instance of the [[category of sheaves]] as a [[localization]] of the category of [[presheaf|presheaves]]) makes it a suitable 1-categorical preparation for the [[infinity-category|infinity-categorical]] discussion of sheaves in \begin{itemize}% \item J. Lurie, \emph{[[Higher Topos Theory]]} \end{itemize} and of triangulated categories, i.e. [[stable (infinity,1)-category|stable infinity-categories]], in \begin{itemize}% \item J. Lurie, \emph{[[Stable Infinity-Categories]]} \end{itemize} On the other hand, [[topos]]-theoretic aspects of the [[category of sheaves]] are not emphasized, here \begin{itemize}% \item Moerdijk-MacLane, \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} is the natural complementary reading. In particular sections V and VII there are directly useful for supplementing the concept of [[geometric morphism]] and its relation to [[localization]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{1_the_language_of_categories}{1 The language of categories}\dotfill \pageref*{1_the_language_of_categories} \linebreak \noindent\hyperlink{2_limits}{2 Limits}\dotfill \pageref*{2_limits} \linebreak \noindent\hyperlink{3_filtrant_limits}{3 Filtrant Limits}\dotfill \pageref*{3_filtrant_limits} \linebreak \noindent\hyperlink{4_tensor_categories}{4 Tensor Categories}\dotfill \pageref*{4_tensor_categories} \linebreak \noindent\hyperlink{5_generators_and_representability}{5 Generators and Representability}\dotfill \pageref*{5_generators_and_representability} \linebreak \noindent\hyperlink{6_indization_of_categories}{6 Indization of Categories}\dotfill \pageref*{6_indization_of_categories} \linebreak \noindent\hyperlink{7_localization}{7 Localization}\dotfill \pageref*{7_localization} \linebreak \noindent\hyperlink{8_additive_and_abelian_categories}{8 Additive and Abelian Categories}\dotfill \pageref*{8_additive_and_abelian_categories} \linebreak \noindent\hyperlink{9_accesible_objects_and_injective_objects}{9 $\pi$-accesible Objects and $F$-injective Objects}\dotfill \pageref*{9_accesible_objects_and_injective_objects} \linebreak \noindent\hyperlink{10_triangulated_categories}{10 Triangulated Categories}\dotfill \pageref*{10_triangulated_categories} \linebreak \noindent\hyperlink{11_complexes_in_additive_categories}{11 Complexes in Additive Categories}\dotfill \pageref*{11_complexes_in_additive_categories} \linebreak \noindent\hyperlink{12_complexes_in_abelian_categories}{12 Complexes in Abelian Categories}\dotfill \pageref*{12_complexes_in_abelian_categories} \linebreak \noindent\hyperlink{13_derived_categories}{13 Derived Categories}\dotfill \pageref*{13_derived_categories} \linebreak \noindent\hyperlink{14_unbounded_derived_categories}{14 Unbounded Derived Categories}\dotfill \pageref*{14_unbounded_derived_categories} \linebreak \noindent\hyperlink{15_indization_and_derivation_of_abelian_categories}{15 Indization and Derivation of Abelian Categories}\dotfill \pageref*{15_indization_and_derivation_of_abelian_categories} \linebreak \noindent\hyperlink{16_grothendieck_topologies}{16 Grothendieck Topologies}\dotfill \pageref*{16_grothendieck_topologies} \linebreak \noindent\hyperlink{17_sheaves_on_grothendieck_topologies}{17 Sheaves on Grothendieck Topologies}\dotfill \pageref*{17_sheaves_on_grothendieck_topologies} \linebreak \noindent\hyperlink{18_abelian_sheaves}{18 Abelian Sheaves}\dotfill \pageref*{18_abelian_sheaves} \linebreak \noindent\hyperlink{19_stacks_and_twisted_sheaves}{19 Stacks and Twisted Sheaves}\dotfill \pageref*{19_stacks_and_twisted_sheaves} \linebreak The following lists chapterwise linked lists of keywords to relevant and related existing entries, as far as they already exist. For a pedagogical motivation of the general topic under consideration here see \begin{itemize}% \item [[motivation for sheaves, cohomology and higher stacks]] \end{itemize} \hypertarget{1_the_language_of_categories}{}\subsection*{{1 The language of categories}}\label{1_the_language_of_categories} \begin{itemize}% \item [[foundations]] \begin{itemize}% \item [[ETCS]] \item [[Grothendieck universe]] \end{itemize} \item [[category]] \begin{itemize}% \item [[morphism]] \begin{itemize}% \item [[hom-set]] \item [[identity morphism]] \item [[epimorphism]] \item [[monomorphism]] \item [[inverse]] \item [[isomorphism]] \item [[endomorphism]] \item [[automorphism]] \end{itemize} \item [[object]] \begin{itemize}% \item [[initial object]] \item [[terminal object]] \item [[zero object]] \end{itemize} \item [[small category]] \item [[locally small category]] \item [[finite category]] \item [[opposite category]] \item [[subcategory]] \item general examples \begin{itemize}% \item [[discrete category]] \item [[partial order|poset]] \item [[groupoid]] \item [[monoid]] \item [[group]] \item [[arrow category]] \begin{itemize}% \item [[comma category]] \begin{itemize}% \item [[category of elements]] \item [[generalized universal bundle]] \end{itemize} \item [[subobject]] \end{itemize} \end{itemize} \item [[partially ordered category]] \item concrete examples \begin{itemize}% \item classical examples: sets with [[stuff, structure, property|extra structure]] \begin{itemize}% \item [[Set]] \item [[Top]] \item [[Vect]] \item [[simplex category]] \end{itemize} \item [[point]] \item [[globe]] \item [[fundamental groupoid]] \end{itemize} \end{itemize} \item [[functor]] \begin{itemize}% \item [[stuff, structure, property]] \begin{itemize}% \item [[forgetful functor]] \item [[essentially surjective functor]] \item [[full functor]] \item [[faithful functor]] \item [[subcategory]] \end{itemize} \item [[natural transformation]] \begin{itemize}% \item [[functor category]] \item [[skeleton]] \item [[equivalence|equivalence of categories]] \end{itemize} \item [[contravariant functor]] \end{itemize} \item [[presheaf]] \begin{itemize}% \item [[representable functor]] \item [[Yoneda lemma]] \begin{itemize}% \item [[Yoneda embedding]] \item [[Yoneda extension]] \item [[free cocompletion]] \item [[co-Yoneda lemma]] \end{itemize} \item [[adjoint functor]] \begin{itemize}% \item [[adjunction]] \item [[examples of adjoint functors]] \end{itemize} \end{itemize} \item functor and presheaf categories \begin{itemize}% \item [[simplicial set]] \item [[presheaf on open subsets]] \end{itemize} \end{itemize} \hypertarget{2_limits}{}\subsection*{{2 Limits}}\label{2_limits} \begin{itemize}% \item [[limit]] \begin{itemize}% \item [[colimit]] \item examples \begin{itemize}% \item [[limits and colimits by example]] \item [[product]] \item [[coproduct]] \item [[pullback]] \item [[pushout]] \item [[fiber product]] \item [[equalizer]] \item [[coequalizer]] \item [[kernel]] \item [[cokernel]] \end{itemize} \item [[weighted limit]] \item [[continuous functor]] \end{itemize} \item [[Kan extension]] \begin{itemize}% \item [[Yoneda extension]] \end{itemize} \item [[cofinal functor]] \item [[cofinally small category]] \end{itemize} \hypertarget{3_filtrant_limits}{}\subsection*{{3 Filtrant Limits}}\label{3_filtrant_limits} \begin{itemize}% \item [[filtered category]] \item [[filtered limit]] \item [[exact functor]] \begin{itemize}% \item [[flat functor]] \end{itemize} \end{itemize} \hypertarget{4_tensor_categories}{}\subsection*{{4 Tensor Categories}}\label{4_tensor_categories} \begin{itemize}% \item [[monoidal category]] \begin{itemize}% \item [[braided monoidal category]] \item [[closed monoidal category]] \end{itemize} \item [[enriched category theory]] \begin{itemize}% \item [[enriched category]] \end{itemize} \end{itemize} \hypertarget{5_generators_and_representability}{}\subsection*{{5 Generators and Representability}}\label{5_generators_and_representability} \begin{itemize}% \item [[image]] \begin{itemize}% \item [[coimage]] \item [[strict morphism]] \begin{itemize}% \item [[strict epimorphism]] \item [[regular epimorphism]] \end{itemize} \end{itemize} \item [[subobject]] \item [[generator]] \end{itemize} \hypertarget{6_indization_of_categories}{}\subsection*{{6 Indization of Categories}}\label{6_indization_of_categories} \begin{itemize}% \item [[ind-object]] \begin{itemize}% \item [[pro-object]] \item [[finitely presentable object]] \item [[compact object]] \end{itemize} \end{itemize} \hypertarget{7_localization}{}\subsection*{{7 Localization}}\label{7_localization} \begin{itemize}% \item [[homotopical category]] \begin{itemize}% \item [[category with weak equivalences]] \item [[category of fibrant objects]] \item [[Waldhausen category]] \item [[model category]] \end{itemize} \item [[localization]] \begin{itemize}% \item [[calculus of fractions]] \begin{itemize}% \item [[multiplicative system]] \item [[category of fractions]] \end{itemize} \item [[geometric embedding]] \item [[homotopy category]] \item [[derived functor]] \end{itemize} \end{itemize} \hypertarget{8_additive_and_abelian_categories}{}\subsection*{{8 Additive and Abelian Categories}}\label{8_additive_and_abelian_categories} \begin{itemize}% \item [[group object]] \item [[Ab]] \item [[Ab-enriched category]] \item [[additive and abelian categories]] \begin{itemize}% \item [[pre-additive category]] \item [[additive category]] \item [[pre-abelian category]] \item [[abelian category]] \item [[semi-abelian category]] \item [[Grothendieck category]] \end{itemize} \item [[biproduct]] \begin{itemize}% \item [[direct sum]] \item [[matrix calculus]] \end{itemize} \item [[chain complex]] \begin{itemize}% \item [[kernel]] \item [[cokernel]] \item [[homology]] \end{itemize} \end{itemize} \hypertarget{9_accesible_objects_and_injective_objects}{}\subsection*{{9 $\pi$-accesible Objects and $F$-injective Objects}}\label{9_accesible_objects_and_injective_objects} \hypertarget{10_triangulated_categories}{}\subsection*{{10 Triangulated Categories}}\label{10_triangulated_categories} \begin{itemize}% \item [[stable (infinity,1)-category]] \item [[triangulated category]] \item [[cohomological functor]] \item [[null system]] \end{itemize} \hypertarget{11_complexes_in_additive_categories}{}\subsection*{{11 Complexes in Additive Categories}}\label{11_complexes_in_additive_categories} \begin{itemize}% \item [[homological algebra]] \begin{itemize}% \item [[category with translation]] \item [[differential object]] \begin{itemize}% \item [[complex]] \item [[double complex]] \end{itemize} \item [[mapping cone]] \item [[category of chain complexes]] \end{itemize} \end{itemize} \hypertarget{12_complexes_in_abelian_categories}{}\subsection*{{12 Complexes in Abelian Categories}}\label{12_complexes_in_abelian_categories} \begin{itemize}% \item [[snake lemma]] \item [[quasi-isomorphism]] \end{itemize} \hypertarget{13_derived_categories}{}\subsection*{{13 Derived Categories}}\label{13_derived_categories} \begin{itemize}% \item [[derived category]] \item [[derived functor on a derived category]] \end{itemize} \hypertarget{14_unbounded_derived_categories}{}\subsection*{{14 Unbounded Derived Categories}}\label{14_unbounded_derived_categories} \begin{itemize}% \item [[injective object]] \item [[projective object]] \end{itemize} \hypertarget{15_indization_and_derivation_of_abelian_categories}{}\subsection*{{15 Indization and Derivation of Abelian Categories}}\label{15_indization_and_derivation_of_abelian_categories} \hypertarget{16_grothendieck_topologies}{}\subsection*{{16 Grothendieck Topologies}}\label{16_grothendieck_topologies} \begin{itemize}% \item [[coverage]] \begin{itemize}% \item [[Grothendieck topology]] \begin{itemize}% \item [[Lawvere-Tierney topology]] \end{itemize} \item [[sieve]] \item [[local epimorphism]] \item [[local isomorphism]] \item [[dense monomorphism]] \end{itemize} \item [[site]] \end{itemize} \hypertarget{17_sheaves_on_grothendieck_topologies}{}\subsection*{{17 Sheaves on Grothendieck Topologies}}\label{17_sheaves_on_grothendieck_topologies} \begin{itemize}% \item [[category of sheaves]] \begin{itemize}% \item [[sheaf]] \item [[sheafification]] \begin{itemize}% \item [[geometric morphism]] \item sheafification with respect to a [[Lawvere-Tierney topology]] \item [[IPC-property]] \end{itemize} \item operations \begin{itemize}% \item [[direct image]] \item [[inverse image]] \item [[restriction and extension of sheaves]] \end{itemize} \end{itemize} \end{itemize} \hypertarget{18_abelian_sheaves}{}\subsection*{{18 Abelian Sheaves}}\label{18_abelian_sheaves} \begin{itemize}% \item hindsight motivation \begin{itemize}% \item [[simplicial presheaf|simplicial sheaf]] \item [[Dold-Kan correspondence]] \item [[abelian sheaf]] \end{itemize} \item [[closed monoidal structure on sheaves]] \item [[ringed site]] \item [[abelian sheaf cohomology]] \begin{itemize}% \item [[Deligne cohomology]] \end{itemize} \end{itemize} \hypertarget{19_stacks_and_twisted_sheaves}{}\subsection*{{19 Stacks and Twisted Sheaves}}\label{19_stacks_and_twisted_sheaves} \begin{itemize}% \item [[higher category theory]] \begin{itemize}% \item [[2-category]] \item [[2-groupoid]] \end{itemize} \item [[stack]] \item outloook and further reading \begin{itemize}% \item [[infinity-stack homotopically]] \begin{itemize}% \item [[simplicial presheaf]] \item [[model structure on simplicial presheaves]] \item [[descent for simplicial presheaves]] \end{itemize} \item [[Higher Topos Theory]] \begin{itemize}% \item [[(infinity,1)-category of (infinity,1)-sheaves]] \item [[descent]] \end{itemize} \end{itemize} \end{itemize} category: reference \end{document}