\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cauchy filter} \hypertarget{cauchy_filters}{}\section*{{Cauchy filters}}\label{cauchy_filters} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{in_nonstandard_analysis}{In nonstandard analysis}\dotfill \pageref*{in_nonstandard_analysis} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Cauchy filter} on a [[space]] $X$ is a [[proper filter]] on $X$ that contains sets (meaning [[subsets]] of $X$) of arbitrarily small [[diameter]]. The precise definition depends on what sort of space $X$ is, up to the full generality of a [[Cauchy space]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} In a [[metric space]], the [[diameter]] of a [[subset]] $A$ is the [[supremum]] of the [[distance]]s $d(x,y)$ for $x,y \in A$ (which is a [[lower real number]] in general). However, we need not think precisely about these diameters; it is enough to characterise those sets with diameter at most $\delta$. \begin{defn} \label{metric}\hypertarget{metric}{} A \textbf{Cauchy filter} on a metric space is a [[proper filter]] $F$ with, for each strictly [[positive number]] $\delta$, a set $A \in F$ with, for each $x,y \in A$, $d(x,y) \leq \delta$. \end{defn} (It is actually sufficient to consider enough sufficiently small values of $\delta$, say [[rational number|rational]] $\delta$ or $2^{-n}$ for $n$ a [[natural number]].) In a [[gauge space]], instead of a single number $\delta$ to estimate diameter, we use $\delta$ together with a gauging distance $d$. \begin{defn} \label{gauge}\hypertarget{gauge}{} A \textbf{Cauchy filter} on a gauge space is a [[proper filter]] $F$ with, for each gauging distance $d$ and each strictly positive number $\delta$, a set $A \in F$ with, for each $x,y \in A$, $d(x,y) \leq \delta$. \end{defn} (It is actually sufficient to consider a base of gauging distances, as well as enough sufficiently small $\delta$.) In a [[topological group]], we use a [[neighbourhood]] of the [[identity element]] to estimate diameter. \begin{defn} \label{topgroup}\hypertarget{topgroup}{} A \textbf{Cauchy filter} on a topological group is a [[proper filter]] $F$ with, for each neighbourhood $U$ of the identity, a set $A \in F$ with, for each $x,y \in A$, $x^{-1} y \in U$ (or equivalently, for each $x,y \in A$, for some $n \in U$, $x n = y$). \end{defn} (It is sufficient to consider a [[neighbourhood base]] at the identity. There is no difference between left and right even for nonabelian groups.) In a [[uniform space]], we use an [[entourage]] $U$ to estimate diameter. \begin{defn} \label{uniform}\hypertarget{uniform}{} A \textbf{Cauchy filter} on a uniform space is a [[proper filter]] $F$ with, for each entourage $U$, a set $A \in F$ with, for each $x,y \in A$, $x \approx_U y$ (that is, $(x,y) \in U$). \end{defn} (It is sufficient to consider a base of the uniformity.) If you want to define uniformities in terms of [[uniform covers]]: \begin{defn} \label{ucover}\hypertarget{ucover}{} A \textbf{Cauchy filter} on a uniform space is a [[proper filter]] $F$ with, for each uniform cover $U$, a set $A \in F$ with $A \in U$. \end{defn} (It is sufficient to consider a base of uniform covers.) All of the above have non-symmetric versions: [[quasimetric spaces]], [[quasigauge spaces]], [[topological monoids]], [[quasiuniform spaces]]. The definition of Cauchy filter for these is the same, with these caveats: \begin{itemize}% \item for a topological monoid, there is a difference between left and right in $x n = y$ in Definition \ref{topgroup}, giving left-Cauchy and right-Cauchy filters; \item there is no notion of quasiuniform cover to generalise Definition \ref{ucover}. \end{itemize} The most general context is that of a [[Cauchy space]], where the notion of Cauchy filter is axiomatic. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Cauchy filters in all cases above have these properties: \begin{itemize}% \item Every Cauchy filter is [[proper filter|proper]]. \item The [[principal ultrafilter]] $U_x$ at any point $x$ is Cauchy. \item If $F$ is Cauchy, $G$ is [[proper filter|proper]], and $G$ refines $F$ ($G \supseteq F$), then $G$ is Cauchy. \item If $F$ and $G$ are Cauchy and their [[join]] $F \vee G$ is proper, then their [[intersection]] $F \cap G$ is Cauchy. \end{itemize} These conditions form the abstract definition of a [[Cauchy space]]. Furthermore, all of these have a notion of [[convergence]] given as follows: \begin{itemize}% \item A filter $F$ \textbf{converges} to a point $x$ if $F \cap U_x$ is Cauchy. \end{itemize} In this way, every Cauchy space becomes a [[convergence space]], which agrees with the usual convergence on metric spaces, uniform spaces, etc. A [[function]] $f\colon X \to Y$ between spaces is \textbf{[[Cauchy-continuous map|Cauchy-continuous]]} if, for every Cauchy filter $F$ on $X$, the filter (generated by) $f(F)$ is Cauchy. (These are the [[morphisms]] in the [[category]] of Cauchy spaces.) \hypertarget{in_nonstandard_analysis}{}\subsection*{{In nonstandard analysis}}\label{in_nonstandard_analysis} In [[nonstandard analysis]], the hyperpoints of a (quasi)uniform space have a relation of [[adequality]]. A proper filter $F$ is Cauchy iff its nonstandard extension $F^*$ contains a hyperset (a collection of hyperpoints) $A$ whose elements are all adequal. So compared to the other definitions, a single $A$ of infinitesimal diameter suffices. A hyperpoint $x$ is \textbf{[[finite hyperpoint|finite]]} (or \textbf{limited}) if there is a proper filter $F$ (necessarily Cauchy) such that $F^*$ contains a hyperset whose elements are all adequal to $x$. In the analogy between hyperpoints and [[ultrafilters]], the finite hyperpoints correspond to the Cauchy ultrafilters. A map $f$ between (quasi)uniform spaces is Cauchy-continuous iff its nonstandard extension $f^*$ has the property that $f^*(x)$ and $f^*(y)$ are adequal whenever $x$ and $y$ are adequal and $x$ is finite. (Compare that $f$ is [[uniformly continuous]] iff $f^*$ has this property regardless of whether $x$ is finite.) Presumably one can define a [[Cauchy space]] in nonstandard analysis by specifying the finite hyperpoints and the relation of adequality only with these (although perhaps not every Cauchy space arises in this way). [[!redirects Cauchy filter]] [[!redirects Cauchy filters]] \end{document}