\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cauchy principal value} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_an_integral}{As an integral}\dotfill \pageref*{as_an_integral} \linebreak \noindent\hyperlink{as_a_distribution}{As a distribution}\dotfill \pageref*{as_a_distribution} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_principal_value_of_}{The principal value of $1/x$}\dotfill \pageref*{the_principal_value_of_} \linebreak \noindent\hyperlink{PrincipalValueOfPowerOfAQuadraticForm}{The principal value of $1/(q(x) + m^2)$}\dotfill \pageref*{PrincipalValueOfPowerOfAQuadraticForm} \linebreak \noindent\hyperlink{FourierTransformOfDeltaOfTheMassShell}{The Fourier transform of $\delta(q + m^2)$}\dotfill \pageref*{FourierTransformOfDeltaOfTheMassShell} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Cauchy principal value} of a [[function]] which is [[integrable function|integrable]] on the [[complement]] of one point is, if it exists, the [[limit of a sequence|limit]] of the [[integrals]] of the function over subsets in the [[complement]] of this point as these integration [[domains]] tend to that point \emph{symmetrically} from all sides. One also subsumes the case that the ``point'' is ``at infinity'', hence that the function is [[integrable function|integrable]] over every [[bounded subsets|bounded]] [[domain]]. In this case the Cauchy principal value is the [[limit of a sequence|limit]], if it exists, of the [[integrals]] of the function over bounded domains, as their bounds tend \emph{symmetrically} to infinity. The operation of sending a [[compactly supported function|compactly supported]] [[smooth function]] ([[bump function]]) to Cauchy principal value of its pointwise product with a function $f$ that may be singular at the origin defines a [[distribution]], usually denoted $PV(f)$. When the Cauchy principal value exists but the full [[integral]] does not (hence when the full integral ``diverges'') one may think of the Cauchy principal value as ``exracting a finite value from a diverging quantity''. This is similar to the \emph{intuition} of the early days of [[renormalization]] in [[perturbative quantum field theory]] ([[Schwinger-Tomonaga-Feynman-Dyson]]), but one has to be careful not to carry this analogy too far. One point where the Cauchy principal value really does play a key role in [[perturbative quantum field theory]] is in the computation of [[Green functions]] ([[propagators]]) for the [[Klein-Gordon operator]] and the [[Dirac operator]]. See remark \ref{FeynmanPropagator} below and see at \emph{[[Feynman propagator]]} for more on this. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{as_an_integral}{}\subsubsection*{{As an integral}}\label{as_an_integral} \begin{defn} \label{CauchyIntegralValueOfIntegralOverRealline}\hypertarget{CauchyIntegralValueOfIntegralOverRealline}{} \textbf{(Cauchy principal value of an integral over the real line)} Let $f \colon \mathbb{R} \to \mathbb{R}$ be a [[function]] on the [[real line]] such that for every [[positive real number]] $\epsilon$ its [[restriction]] to $\mathbb{R}\setminus (-\epsilon, \epsilon)$ is [[integrable function|integrable]]. Then the \emph{Cauchy principal value} of $f$ is, if it exists, the [[limit of a sequence|limit]] \begin{displaymath} PV(f) \coloneqq \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R} \setminus (-\epsilon, \epsilon)}{\int} f(x) \, d x \,. \end{displaymath} \end{defn} \hypertarget{as_a_distribution}{}\subsubsection*{{As a distribution}}\label{as_a_distribution} \begin{defn} \label{CauchyPrincipalValueAsDistributionOnRealLine}\hypertarget{CauchyPrincipalValueAsDistributionOnRealLine}{} \textbf{(Cauchy principal value as distribution on the real line)} Let $f \colon \mathbb{R} \to \mathbb{R}$ be a [[function]] on the [[real line]] such that for all [[bump functions]] $b \in C^\infty_{cp}(\mathbb{R})$ the Cauchy principal value of the pointwise product function $f b$ exists, in the sense of def. \ref{CauchyIntegralValueOfIntegralOverRealline}. Then this assignment \begin{displaymath} PV(f) \;\colon\; b \mapsto PV(f b) \end{displaymath} defines a [[distribution]] $PV(f) \in \mathcal{D}'(\mathbb{R})$. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{the_principal_value_of_}{}\subsubsection*{{The principal value of $1/x$}}\label{the_principal_value_of_} \begin{example} \label{}\hypertarget{}{} Let $f \colon \mathbb{R} \to \mathbb{R}$ be an [[integrable function]] which is symmetric, in that $f(-x) = f(x)$ for all $x \in \mathbb{R}$. Then the principal value integral (def. \ref{CauchyIntegralValueOfIntegralOverRealline}) of $x \mapsto \frac{f(x)}{x}$ exists and is zero: \begin{displaymath} \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}\setminus (-\epsilon, \epsilon)}{\int} \frac{f(x)}{x} d x \; = \; 0 \end{displaymath} This is because, by the symmetry of $f$ and the skew-symmetry of $x \mapsto 1/x$, the the two contributions to the integral are equal up to a sign: \begin{displaymath} \int_{-\infty}^{-\epsilon} \frac{f(x)}{x} d x \;=\; - \int_{\epsilon}^\infty \frac{f(x)}{x} d x \,. \end{displaymath} \end{example} \begin{example} \label{PrincipalValueOfInverseFunctionCharacteristicEquation}\hypertarget{PrincipalValueOfInverseFunctionCharacteristicEquation}{} The principal value distribution $PV\left( \frac{1}{x}\right)$ (def. \ref{CauchyPrincipalValueAsDistributionOnRealLine}) solves the distributional equation \begin{equation} x PV\left(\frac{1}{x}\right) = 1 \phantom{AAA} \in \mathcal{D}'(\mathbb{R}^1) \,. \label{DistributionalEquationxfOfxEqualsOne}\end{equation} Since the [[delta distribution]] $\delta \in \mathcal{D}'(\mathbb{R}^1)$ solves the equation \begin{displaymath} x \delta(x) = 0 \phantom{AAA} \in \mathcal{D}'(\mathbb{r}^1) \end{displaymath} we have that more generally every [[linear combination]] of the form \begin{equation} F(x) \coloneqq PV(1/x) + c \delta(x) \phantom{AAA} \in \mathcal{D}'(\mathbb{R}^1) \label{GeneralDistributionalSolutionToxfEqualsOne}\end{equation} for $c \in \mathbb{C}$, is a distributional solution to $x F(x) = 1$. The [[wave front set]] of all these solutions is \begin{displaymath} WF\left( PV(1/x) + c \delta(x) \right) \;=\; \left\{ (0,k) \;\vert\; k \in \mathbb{R}^\ast \setminus \{0\} \right\} \,. \end{displaymath} \end{example} \begin{proof} The first statement is immediate from the definition: For $b \in C^\infty_c(\mathbb{R}^1)$ any [[bump function]] we have that \begin{displaymath} \begin{aligned} \left\langle x PV\left(\frac{1}{x}\right), b \right\rangle & \coloneqq \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1 \setminus (-\epsilon, \epsilon)}{\int} \frac{x}{x}b(x) \, d x \\ & = \int b(x) d x \\ & = \langle 1,b\rangle \end{aligned} \end{displaymath} Regarding the second statement: It is clear that the wave front set is concentrated at the origin. By symmetry of the distribution around the origin, it must contain both [[direction of a vector|directions]]. \end{proof} \begin{prop} \label{}\hypertarget{}{} In fact \eqref{GeneralDistributionalSolutionToxfEqualsOne} is the most general distributional solution to \eqref{DistributionalEquationxfOfxEqualsOne}. \end{prop} This follows by the characterization of [[extension of distributions]] to a point, see there at \href{extension+of+distributions#SpaceOfPointExtensions}{this prop.} (\hyperlink{HoermanderLPDO1}{H\"o{}rmander 90, thm. 3.2.4}) \begin{defn} \label{IntegrationAgainstInverseOfxWithImaginaryOffset}\hypertarget{IntegrationAgainstInverseOfxWithImaginaryOffset}{} \textbf{(integration against inverse variable with imaginary offset)} Write \begin{displaymath} \tfrac{1}{x + i0^\pm} \;\in\; \mathcal{D}'(\mathbb{R}) \end{displaymath} for the [[distribution]] which is the [[limit]] in $\mathcal{D}'(\mathbb{R})$ of the [[non-singular distributions]] which are given by the [[smooth functions]] $x \mapsto \tfrac{1}{x \pm i \epsilon}$ as the [[positive real number]] $\epsilon$ tends to zero: \begin{displaymath} \frac{1}{ x + i 0^\pm } \;\coloneqq\; \underset{ { \epsilon \in (0,\infty) } \atop { \epsilon \to 0 } }{\lim} \tfrac{1}{x \pm i \epsilon} \end{displaymath} hence the distribution which sends $b \in C^\infty(\mathbb{R}^1)$ to \begin{displaymath} b \mapsto \underset{\mathbb{R}}{\int} \frac{b(x)}{x \pm i \epsilon} \, d x \,. \end{displaymath} \end{defn} \begin{prop} \label{CauchyPrincipalValueEqualsIntegrationWithImaginaryOffsetPlusDelta}\hypertarget{CauchyPrincipalValueEqualsIntegrationWithImaginaryOffsetPlusDelta}{} \textbf{([[Cauchy principal value]] equals integration with [[imaginary number|imaginary]] offset plus [[delta distribution]])} The Cauchy principal value distribution $PV\left( \tfrac{1}{x}\right) \in \mathcal{D}'(\mathbb{R})$ (def. \ref{CauchyPrincipalValueAsDistributionOnRealLine}) is equal to the sum of the integration over $1/x$ with imaginary offset (def. \ref{IntegrationAgainstInverseOfxWithImaginaryOffset}) and a [[delta distribution]]. \begin{displaymath} PV\left(\frac{1}{x}\right) \;=\; \frac{1}{x + i 0^\pm} \pm i \pi \delta \,. \end{displaymath} In particular, by prop. \ref{PrincipalValueOfInverseFunctionCharacteristicEquation} this means that $\tfrac{1}{x + i 0^\pm}$ solves the distributional equation \begin{displaymath} x \frac{1}{x + i 0^\pm} \;=\; 1 \phantom{AA} \in \mathcal{D}'(\mathbb{R}^1) \,. \end{displaymath} \end{prop} \begin{proof} Using that \begin{displaymath} \begin{aligned} \frac{1}{x \pm i \epsilon} & = \frac{ x \mp i \epsilon }{ (x + i \epsilon)(x - i \epsilon) } \\ & = \frac{ x \mp i \epsilon }{(x^2 + \epsilon^2)} \end{aligned} \end{displaymath} we have for every [[bump function]] $b \in C^\infty_{cp}(\mathbb{R}^1)$ \begin{displaymath} \begin{aligned} \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \frac{b(x)}{x \pm i \epsilon} d x & \;=\; \underset{ (A) }{ \underbrace{ \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \frac{x^2}{x^2 + \epsilon^2} \frac{b(x)}{x} d x } } \mp i \pi \underset{(B)}{ \underbrace{ \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2} b(x) \, d x }} \end{aligned} \end{displaymath} Since \begin{displaymath} \itexarray{ && \frac{x^2}{x^2 + \epsilon^2} \\ & {}^{\mathllap{ { {\vert x \vert} \lt \epsilon } \atop { \epsilon \to 0 } }}\swarrow && \searrow^{\mathrlap{ {{\vert x\vert} \gt \epsilon} \atop { \epsilon \to 0 } }} \\ 0 && && 1 } \end{displaymath} it is plausible that $(A) = PV\left( \frac{b(x)}{x} \right)$, and similarly that $(B) = b(0)$. In detail: \begin{displaymath} \begin{aligned} (A) & = \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \frac{x}{x^2 + \epsilon^2} b(x) d x \\ & = \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \frac{d}{d x} \left( \tfrac{1}{2} \ln(x^2 + \epsilon^2) \right) b(x) d x \\ & = -\tfrac{1}{2} \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \ln(x^2 + \epsilon^2) \frac{d b}{d x}(x) d x \\ & = -\tfrac{1}{2} \underset{\mathbb{R}^1}{\int} \ln(x^2) \frac{d b}{d x}(x) d x \\ & = - \underset{\mathbb{R}^1}{\int} \ln({\vert x \vert}) \frac{d b}{d x}(x) d x \\ & = - \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1\setminus (-\epsilon, \epsilon)}{\int} \ln( {\vert x \vert} ) \frac{d b}{d x}(x) d x \\ & = \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1\setminus (-\epsilon, \epsilon)}{\int} \frac{1}{x} b(x) d x \\ & = PV\left( \frac{b(x)}{x} \right) \end{aligned} \end{displaymath} and \begin{displaymath} \begin{aligned} (B) & = \tfrac{1}{\pi} \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \frac{\epsilon}{x^2 + \epsilon^2} b(x) \, d x \\ & = \tfrac{1}{\pi} \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \left( \frac{d}{d x} \arctan\left( \frac{x}{\epsilon} \right) \right) b(x) \, d x \\ & = - \tfrac{1}{\pi} \underset{\epsilon \to 0}{\lim} \underset{\mathbb{R}^1}{\int} \arctan\left( \frac{x}{\epsilon} \right) \frac{d b}{d x}(x) \, d x \\ & = - \frac{1}{2} \underset{\mathbb{R}^1}{\int} sgn(x) \frac{d b}{d x}(x) \, d x \\ & = b(0) \end{aligned} \end{displaymath} where we used that the [[derivative]] of the [[arctan]] function is $\frac{d}{ d x} \arctan(x) = 1/(1 + x^2)$ and that $\underset{\epsilon \to + \infty}{\lim} \arctan(x/\epsilon) = \tfrac{\pi}{2}sgn(x)$ is proportional to the [[sign function]]. \end{proof} \begin{exmaple} \label{FourierIntegralFormulaForStepFunction}\hypertarget{FourierIntegralFormulaForStepFunction}{} \textbf{([[Fourier integral]] formula for [[step function]])} The [[Heaviside distribution]] $\Theta \in \mathcal{D}'(\mathbb{R})$ is equivalently the following Cauchy principal value: \begin{displaymath} \begin{aligned} \Theta(x) & = \frac{1}{2\pi i} \int_{-\infty}^\infty \frac{e^{i \omega x}}{\omega - i 0^+} \\ & \coloneqq \underset{ \epsilon \to 0^+}{\lim} \frac{1}{2 \pi i} \int_{-\infty}^\infty \frac{e^{i \omega x}}{\omega - i \epsilon} d\omega \,, \end{aligned} \end{displaymath} where the limit is taken over [[sequences]] of [[positive numbers|positive]] [[real numbers]] $\epsilon \in (-\infty,0)$ tending to zero. \end{exmaple} \begin{proof} We may think of the [[integrand]] $\frac{e^{i \omega x}}{\omega - i \epsilon}$ uniquely extended to a [[holomorphic function]] on the [[complex plane]] and consider computing the given real [[line integral]] for fixed $\epsilon$ as a [[contour integral]] in the [[complex plane]]. If $x \in (0,\infty)$ is [[positive number|positive]], then the exponent \begin{displaymath} i \omega x = - Im(\omega) x + i Re(\omega) x \end{displaymath} has negative [[real part]] for \emph{positive} [[imaginary part]] of $\omega$. This means that the [[line integral]] equals the complex [[contour integral]] over a contour $C_+ \subset \mathbb{C}$ closing in the [[upper half plane]]. Since $i \epsilon$ has positive [[imaginary part]] by construction, this contour does encircle the [[pole]] of the [[integrand]] $\frac{e^{i \omega x}}{\omega - i \epsilon}$ at $\omega = i \epsilon$. Hence by the [[Cauchy integral formula]] in the case $x \gt 0$ one gets \begin{displaymath} \begin{aligned} \underset{\epsilon \to 0^+}{\lim} \frac{1}{2 \pi i} \int_{-\infty}^\infty \frac{e^{i \omega x}}{\omega - i \epsilon} d\omega & = \underset{\epsilon \to 0^+}{\lim} \frac{1}{2 \pi i} \oint_{C_+} \frac{e^{i \omega x}}{\omega - i \epsilon} d \omega \\ & = \underset{\epsilon \to 0^+}{\lim} \left(e^{i \omega x}\vert_{\omega = i \epsilon}\right) \\ & = \underset{\epsilon \to 0^+}{\lim} e^{- \epsilon x} \\ & = e^0 = 1 \end{aligned} \,. \end{displaymath} Conversely, for $x \lt 0$ the real part of the integrand decays as the \emph{[[negative number|negative]]} imaginary part increases, and hence in this case the given line integral equals the contour integral for a contour $C_- \subset \mathbb{C}$ closing in the lower half plane. Since the integrand has no pole in the lower half plane, in this case the [[Cauchy integral formula]] says that this integral is zero. \end{proof} Conversely, by the [[Fourier inversion theorem]], the [[Fourier transform]] of the [[Heaviside distribution]] is the Cauchy principal value as in prop. \ref{CauchyPrincipalValueEqualsIntegrationWithImaginaryOffsetPlusDelta}: \begin{example} \label{RelationToFourierTransformOfHeavisideDistribution}\hypertarget{RelationToFourierTransformOfHeavisideDistribution}{} \textbf{(relation to [[Fourier transform]] of [[Heaviside distribution]] / [[Schwinger parameter|Schwinger parameterization]])} \begin{displaymath} \begin{aligned} \widehat \Theta(x) & = \int_0^\infty e^{i k x} \, dk \\ & = i \frac{1}{x + i 0^+} \end{aligned} \end{displaymath} Here the second equality is also known as \emph{complex [[Schwinger parameter|Schwinger parameterization]]}. \end{example} \begin{proof} As [[generalized functions]] consider the [[limit of a sequence|limit]] with a decaying component: \begin{displaymath} \begin{aligned} \int_0^\infty e^{i k x} \, dk & = \underset{\epsilon \to 0^+}{\lim} \int_0^\infty e^{i k x - \epsilon k} \, dk \\ & = - \underset{\epsilon \to 0^+}{\lim} \frac{1}{ i x - \epsilon} \\ & = i \frac{1}{x + i 0^+} \end{aligned} \end{displaymath} \end{proof} \hypertarget{PrincipalValueOfPowerOfAQuadraticForm}{}\subsubsection*{{The principal value of $1/(q(x) + m^2)$}}\label{PrincipalValueOfPowerOfAQuadraticForm} Let $q \colon \mathbb{R}^{n} \to \mathbb{R}$ be a non-degenerate real [[quadratic form]] [[analytic continuation|analytically continued]] to a real quadratic form \begin{displaymath} q \;\colon\; \mathbb{C}^n \longrightarrow \mathbb{C} \,. \end{displaymath} Write $\Delta$ for the [[determinant]] of $q$ Write $q^\ast$ for the induced quadratic form on [[dual vector space]]. Notice that $q$ (and hence $a^\ast$) are assumed non-degenerate but need not necessarily be positive or negative definite. \begin{prop} \label{FourierTransformOfPrincipalValueOfPowerOfQuadraticForm}\hypertarget{FourierTransformOfPrincipalValueOfPowerOfQuadraticForm}{} \textbf{([[Fourier transform of distributions|Fourier transform]] of principal value of power of [[quadratic form]])} Let $m \in \mathbb{R}$ be any [[real number]], and $\kappa \in \mathbb{C}$ any [[complex]] number. Then the [[Fourier transform of distributions]] of $1/(q + m^2 + i 0^+)^\kappa$ is \begin{displaymath} \widehat { \left( \frac{1}{q + m^2 + i0^+} \right) } \;=\; \frac{ 2^{1- \kappa} (\sqrt{2\pi})^{n} m^{n/2-\kappa} } { \Gamma(\kappa) \sqrt{\Delta} } \frac{ K_{n/2 - \kappa}\left( m \sqrt{q^\ast - i 0^+} \right) } { \left(\sqrt{q^\ast - i0^+ }\right)^{n/2 - \kappa} } \,, \end{displaymath} where \begin{enumerate}% \item $\Gamma$ deotes the [[Gamma function]] \item $K_{\nu}$ denotes the [[modified Bessel function]]. \end{enumerate} Notice that $K_\nu(a)$ diverges for $a \to 0$ as $a^{-\nu}$ (\href{http://dlmf.nist.gov/10.30#E2}{DLMF 10.30.2}). \end{prop} (\hyperlink{GelfandShilov66}{Gel'fand-Shilov 66, III 2.8 (8) and (9), p 289}) \begin{example} \label{FeynmanPropagator}\hypertarget{FeynmanPropagator}{} \textbf{([[Feynman propagator]])} Let $q \coloneqq \eta^{-1}$ be the dual [[Minkowski metric]] in [[dimension]] $p+1$. Then \begin{displaymath} \Delta_F(x) \;\propto\; \widehat{ \frac{1}{ -\eta^{-1}(k,k) - m^2 + i0^+ } } \end{displaymath} is the [[Feynman propagator]] for the [[Klein-Gordon equation]] on [[Minkowski spacetime]]. In this case prop. \ref{FourierTransformOfPrincipalValueOfPowerOfQuadraticForm} implies that its [[singular support]] is the [[light cone]] $\{x \in \mathbb{R}^{p,1} \;\vert\; \eta(x,x) = 0\}$. \end{example} \hypertarget{FourierTransformOfDeltaOfTheMassShell}{}\subsubsection*{{The Fourier transform of $\delta(q + m^2)$}}\label{FourierTransformOfDeltaOfTheMassShell} Let $q \colon \mathbb{R}^{n} \to \mathbb{R}$ be a non-degenerate real [[quadratic form]] [[analytic continuation|analytically continued]] to a real quadratic form \begin{displaymath} q \;\colon\; \mathbb{C}^n \longrightarrow \mathbb{C} \,. \end{displaymath} Write $\Delta$ for the [[determinant]] of $q$. Write $t \in \mathbb{N}$ for the number of negative eigenvalues. Write $q^\ast$ for the induced quadratic form on [[dual vector space]]. Notice that $q$ (and hence $a^\ast$) are assumed non-degenerate but need not necessarily be positive or negative definite. \begin{prop} \label{FourierTransformOfDeltaDistributionappliedToMassShell}\hypertarget{FourierTransformOfDeltaDistributionappliedToMassShell}{} \textbf{([[Fourier transform]] of [[delta distribution]] applied to [[mass shell]])} Let $m \in \mathbb{R}$, then the [[Fourier transform of distributions]] of the [[delta distribution]] $\delta$ applied to the ``mass shell'' $q + m^2$ is \begin{displaymath} \widehat{ \delta(q + m^2) } \;=\; - \frac{i}{\sqrt{{\vert\Delta\vert}}} \left( e^{i \pi t /2 } \frac{ K_{n/2-1} \left( m \sqrt{ q^\ast + i0^+ } \right) }{ \left(\sqrt{q^\ast + i0^+}\right)^{n/2 - 1} } \;-\; e^{-i \pi t /2 } \frac{ K_{n/2-1} \left( m \sqrt{ q^\ast - i0^+ } \right) }{ \left(\sqrt{q^\ast - i0^+}\right)^{n/2 - 1} } \right) \,, \end{displaymath} where $K_\nu$ denotes the [[modified Bessel function]] of order $\nu$. Notice that $K_\nu(a)$ diverges for $a \to 0$ as $a^{-\nu}$ (\href{http://dlmf.nist.gov/10.30#E2}{DLMF 10.30.2}). \end{prop} (\hyperlink{GelfandShilov66}{Gel'fand-Shilov 66, III 2.11 (7), p 294}) \begin{example} \label{CausalPropagator}\hypertarget{CausalPropagator}{} \textbf{([[causal propagator]])} Let $q \coloneqq \eta^{-1}$ be the dual [[Minkowski metric]] in [[dimension]] $p+1$. Then \begin{displaymath} \Delta_S(x) \;\propto\; \widehat{ \delta(-\eta(k,k) - m^2) \, sgn(k_0) } \end{displaymath} is the [[causal propagator]] for the [[Klein-Gordon equation]] on [[Minkowski spacetime]]. In this case prop. \ref{FourierTransformOfDeltaDistributionappliedToMassShell} implies that its [[singular support]] is the [[light cone]] $\{x \in \mathbb{R}^{p,1} \;\vert\; \eta(x,x) = 0\}$. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[zeta function regularization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Augustin Cauchy]] \begin{itemize}% \item [[Ram Kanwal]], section 8.3 of \emph{Linear Integral Equations} Birkh\"a{}user 1997 \end{itemize} Detailed discussion of relation to [[Bessel functions]] is in \begin{itemize}% \item [[I. M. Gel'fand]], G. E. Shilov, \emph{Generalized functions}, 1--5 , Acad. Press (1966--1968) transl. from . . , . . , . 1-3, .:, 1958; 1: , 2: , 3: \end{itemize} References on homogeneous distributions \begin{itemize}% \item [[Lars Hörmander]], \emph{The Analysis of Linear Partial Differential Operators I} (Springer, 1990, 2nd ed.) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Cauchy_principal_value}{Cauchy principal value}} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Hadamard_finite_part_integral}{Hadamard principal value}} \end{itemize} [[!redirects Cauchy principal values]] [[!redirects principal value]] [[!redirects principal vaues]] \end{document}