\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cayley-Dickson construction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{cayleydickson_construction}{}\section*{{Cayley--Dickson construction}}\label{cayleydickson_construction} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Consider how the [[complex numbers]] are formed from the [[real numbers]]. If generalized carefully, this kind of operation may be performed again to yield the [[quaternions]], then the [[octonions]] (hence the four real [[normed division algebra]]), then the [[sedenions]], and so on. This is a special case of a construction which takes a real [[star-algebra]] $A$ to a new star-algebra whose elements are pairs of elements of $A$. This operation is the \textbf{Cayley--Dickson construction}, named after [[Arthur Cayley]] and [[Leonard Dickson]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $A$ be an [[nonassociative algebra|possibly nonassociative]] [[star-algebra]] over the [[field]] $\mathbb{R}$ of [[real numbers]]: an algebra equipped with an [[involution]] $\overline(-) \colon x \mapsto \overline{x}$ which is an [[antiautomorphism]]. (Actually, $\mathbb{R}$ could be replaced by any [[commutative ring]] in the definitions, although some properties may depend on this ring.) \begin{defn} \label{}\hypertarget{}{} \textbf{(Cayley-Dickson construction, first version)} The \emph{Cayley--Dickson double} $A^2$ of $A$ is the real algebra whose underlying $\mathbb{R}$-[[vector space]] is is the [[direct sum]] $A \oplus A$, and whose multiplication is given by \begin{displaymath} (a,b)\cdot(u,v) \coloneqq (a u - \overline{v} b, b \overline{u} + v a), \end{displaymath} and the formula \begin{displaymath} \widebar{(a,b)} \coloneqq (\overline{a},-b) \end{displaymath} defines an involutive antiautomorphism on $A^2$, so the doubling procedure can be iterated. \end{defn} The following description is different but equivalent: \begin{defn} \label{CayleyDicksonDoubleByAdjoiningFurtherGenerator}\hypertarget{CayleyDicksonDoubleByAdjoiningFurtherGenerator}{} \textbf{(Cayley-Dickson double by generators and relations)} The \emph{Cayley-Dickson double} $A^2$ of $A$ is the real algebra obtained by adjoining one generator $\ell$ to $A$ subject to the following [[generators and relations|relations]]: \begin{displaymath} \ell^2 = -1 \end{displaymath} and \begin{displaymath} a (\ell b) = \ell (\overline{a} b) \,, \phantom{AA} a(\ell b) = (a \overline{b}) \ell \,, \phantom{AA} (\ell a) (b \ell^{-1}) = \overline{a b} \end{displaymath} for all $a, b \in A$. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The map $a\mapsto (a,0)$ is a [[monomorphism]] $A\to A^2$. If $A$ is [[unital algebra|unital]] with unit $1$ then $A^2$ is unital with unit $(1,0)$. In the unital case, the element $\mathrm{i} \coloneqq (0,1)$ has the property $\mathrm{i}^2 = -1 \coloneqq (-1,0)$, and we may write $(a,b)$ as $a + b \mathrm{i}$ (while $a + \mathrm{i} b = (a,\overline{b})$). For this reason, we may write $A[\mathrm{i}]$ in place of $A^2$, at least when $A$ is unital. Generally speaking, the double $A^2$ of an algebra $A$ has a nice property iff $A$ is one level nicer. For simplicity, assume that $A$ is unital (so that $\mathbb{R}$ is a subalgebra). Since $\overline{\mathrm{i}} = -\mathrm{i}$, we see that the involution on $A^2$ is trivial iff the involution on $A$ is trivial and $A$ further has $2 = 0$. Since $\mathrm{i} a = \overline{a} \mathrm{i}$, $A^2$ is [[commutative algebra|commutative]] iff $A$ is commutative and the involution in $A$ is trivial. Since $a (b \mathrm{i}) = (b a) \mathrm{i}$, $A^2$ is [[associative algebra|associative]] iff $A$ is associative and commutative. Finally, $A^2$ is [[alternative algebra|alternative]] iff $A$ is associative (and hence also alternative). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The standard example is the sequence of consecutive doubles starting with $\mathbb{R}$ itself (with the [[identity map]] as involution); these are the \textbf{Cayley--Dickson algebras}: the [[real numbers]] $\mathbb{R}$, the [[complex numbers]] $\mathbb{C}$, the [[quaternions]] $\mathbb{H}$, the [[octonions]] (or Cayley numbers) $\mathbb{O}$, the [[sedenions]] $\mathbb{S}$, etc. These are the [[normed division algebras]] ($\mathbb{R}$, $\mathbb{C}$, $\mathbb{H}$, and $\mathbb{O}$), followed by further algebras which are not [[division algebras]]. All of these algebras are [[power-associative algebra|power-associative]], [[flexible algebra|flexible]], and unital, and have all [[inverse elements]]; the subalgebra with $\overline{x} = x$ is always just $\mathbb{R}$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[composition algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Arthur Cayley]] and [[Leonard Dickson]]. Introduction: \begin{itemize}% \item [[M M Postnikov]], \emph{Lectures on geometry, Semester V: Lie groups and Lie algebras}, Lec. 14 (russian and english editions) \item [[John Baez]], \emph{\href{http://math.ucr.edu/home/baez/octonions/node5.html}{The Cayley--Dickson construction}}, in \emph{\href{http://math.ucr.edu/home/baez/octonions/}{The octonions}}, Bull. Amer. Math. Soc. 39 (2002), 145-205, \href{http://dx.doi.org/10.1090/S0273-0979-01-00934-X}{doi} \item [[John Baez]], \emph{\href{http://math.ucr.edu/home/baez/week59.html}{This Week's Finds --- Week 59}} \end{itemize} More: \begin{itemize}% \item Daniel K. Biss, [[Daniel Dugger]], [[Daniel Isaksen]], \emph{Large annihilators in Cayley-Dickson algebras}, Communications in Algebra 36 (2), 632-664, 2008 (\href{https://arxiv.org/abs/math/0511691}{arxiv:math/0511691}) \item Daniel K. Biss, [[Daniel Christensen]], [[Daniel Dugger]], [[Daniel Isaksen]], \emph{Large annihilators in Cayley-Dickson algebras II}, Boletin de la Sociedad Matematica Mexicana (3) 13(2) (2007), 269-292 (\href{https://arxiv.org/abs/math/0702075}{arxiv:math/0702075}) \item Daniel K. Biss, [[Daniel Christensen]], [[Daniel Dugger]], [[Daniel Isaksen]], \emph{Eigentheory of Cayley-Dickson algebras}, Forum Mathematicum 21(5) (2009), 833-851 (\href{https://arxiv.org/abs/0905.2987}{arxiv:0905.2987}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction}{Cayley--Dickson construction}} \end{itemize} [[!redirects Cayley-Dickson construction]] [[!redirects Cayley–Dickson construction]] [[!redirects Cayley--Dickson construction]] [[!redirects Cayley-Dickson constructions]] [[!redirects Cayley–Dickson constructions]] [[!redirects Cayley--Dickson constructions]] [[!redirects Cayley-Dickson double]] [[!redirects Cayley–Dickson double]] [[!redirects Cayley--Dickson double]] [[!redirects Cayley-Dickson doubles]] [[!redirects Cayley–Dickson doubles]] [[!redirects Cayley--Dickson doubles]] [[!redirects Cayley-Dickson double algebra]] [[!redirects Cayley–Dickson double algebra]] [[!redirects Cayley--Dickson double algebra]] [[!redirects Cayley-Dickson double algebras]] [[!redirects Cayley–Dickson double algebras]] [[!redirects Cayley--Dickson double algebras]] [[!redirects double of an algebra with involution]] [[!redirects double of algebra with involution]] [[!redirects doubles of algebras with involution]] [[!redirects double of a star-algebra]] [[!redirects doubles of star-algebras]] [[!redirects double of a \emph{-algebra]] [[!redirects doubles of}-algebras]] [[!redirects Cayley-Dickson algebra]] [[!redirects Cayley-Dickson algebras]] [[!redirects Cayley–Dickson algebra]] [[!redirects Cayley–Dickson algebras]] [[!redirects Cayley--Dickson algebra]] [[!redirects Cayley--Dickson algebras]] \end{document}