\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chan-Paton bundle} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_field_as_a_prequantum_2bundle}{The $B$-field as a prequantum 2-bundle}\dotfill \pageref*{the_field_as_a_prequantum_2bundle} \linebreak \noindent\hyperlink{the_chanpaton_gauge_field}{The Chan-Paton gauge field}\dotfill \pageref*{the_chanpaton_gauge_field} \linebreak \noindent\hyperlink{the_open_string_sigmamodel}{The open string sigma-model}\dotfill \pageref*{the_open_string_sigmamodel} \linebreak \noindent\hyperlink{the_anomalyfree_open_string_coupling_to_the_chanpaton_gauge_field}{The anomaly-free open string coupling to the Chan-Paton gauge field}\dotfill \pageref*{the_anomalyfree_open_string_coupling_to_the_chanpaton_gauge_field} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[string theory]], the [[background gauge field]] for the [[open string]] [[sigma-model]] over a [[D-brane]] in [[bosonic string theory]] or [[type II string theory]] is a unitary [[principal bundle]] [[connection on a bundle|with connection]], or rather, by the Kapustin-part of the [[Freed-Witten-Kapustin anomaly cancellation]] mechanism, a [[twisted bundle|twisted unitary bundle]], whose twist is the restriction of the ambient [[B-field]] to the [[D-brane]]. The first hint for the existence of such [[background gauge fields]] for the [[open string]] 2d-[[sigma-model]] comes from the fact that the open string's endpoint can naturally be taken to carry labels $i \in \{1, \cdots n\}$. Further analysis then shows that the lowest excitations of these $(i,j)$-strings behave as the quanta of a $U(n)$-[[gauge field]], the $(i,j)$-excitation being the given [[matrix]] element of a $U(n)$-valued connection 1-form $A$. This original argument goes back work by Chan and Paton. Accordingly one speaks of \emph{Chan-Paton factors} and \emph{Chan-Paton bundles} . \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We discuss the Chan-Paton gauge field and its [[quantum anomaly cancellation]] in [[extended prequantum field theory]]. Throughout we write $\mathbf{H} =$ [[Smooth∞Grpd]] for the [[cohesive (∞,1)-topos]] of [[smooth ∞-groupoids]]. \hypertarget{the_field_as_a_prequantum_2bundle}{}\subsubsection*{{The $B$-field as a prequantum 2-bundle}}\label{the_field_as_a_prequantum_2bundle} For $X$ a [[type II supergravity]] [[spacetime]], the [[B-field]] is a map \begin{displaymath} \nabla_B \;\colon\; X \to \mathbf{B}^2 U(1) \,. \end{displaymath} If $X = G$ is a [[Lie group]], this is the [[prequantum 2-bundle]] of $G$-[[Chern-Simons theory]]. Viewed as such we are to find a canonical [[∞-action]] of the [[circle 2-group]] $\mathbf{B}U(1)$ on some $V \in \mathbf{H}$, form the corresponding [[associated ∞-bundle]] and regard the [[sections]] of that as the [[prequantum 2-states]] of the theory. The Chan-Paton gauge field is such a prequantum 2-state. \hypertarget{the_chanpaton_gauge_field}{}\subsubsection*{{The Chan-Paton gauge field}}\label{the_chanpaton_gauge_field} We discuss the [[Chan-Paton gauge fields]] over [[D-branes]] in [[bosonic string theory]] and over $Spin^c$-D-branes in [[type II string theory]]. We fix throughout a natural number $n \in \mathbb{N}$, the \emph{[[rank]]} of the Chan-Paton gauge field. \begin{prop} \label{TheLongSequenceOfTheProjectiveUnitaryExtension}\hypertarget{TheLongSequenceOfTheProjectiveUnitaryExtension}{} The [[extension of groups|extension]] of [[Lie groups]] \begin{displaymath} U(1) \to U(n) \to PU(n) \end{displaymath} exhibiting the [[unitary group]] as a [[circle group]]-extension of the [[projective unitary group]] sits in a long [[homotopy fiber sequence]] of [[smooth ∞-groupoids]] of the form \begin{displaymath} U(1) \to U(n) \to PU(n) \to \mathbf{B}U(1) \to \mathbf{B}U(n) \to \mathbf{B}PU(n) \stackrel{\mathbf{dd}_n}{\to} \mathbf{B}^2 U(1) \,, \end{displaymath} where for $G$ a [[Lie group]] $\mathbf{B}G$ is its [[delooping]] [[Lie groupoid]], hence the [[moduli stack]] of $G$-[[principal bundles]], and where similarly $\mathbf{B}^2 U(1)$ is the [[moduli ∞-stack|moduli 2-stack]] of [[circle 2-group]] [[principal 2-bundles]] ([[bundle gerbes]]). \end{prop} \begin{prop} \label{}\hypertarget{}{} Here \begin{displaymath} \mathbf{dd}_n \;\colon\; \mathbf{B} PU(n) \to \mathbf{B}^2 U(1) \end{displaymath} is a smooth refinement of the universal [[Dixmier-Douady class]] \begin{displaymath} dd_n \;\colon\; B PU(n) \to K(\mathbb{Z}, 3) \end{displaymath} in that under [[geometric realization of cohesive ∞-groupoids]] ${\vert- \vert} \colon$ [[Smooth∞Grpd]] $\to$ [[∞Grpd]] we have \begin{displaymath} {\vert \mathbf{dd}_n \vert} \simeq dd_n \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[∞-action]]} the [[homotopy fiber sequence]] in prop. \ref{TheLongSequenceOfTheProjectiveUnitaryExtension} \begin{displaymath} \itexarray{ \mathbf{B} U(n) &\to& \mathbf{B} PU(n) \\ && \downarrow \\ && \mathbf{B}^2 U(1) } \end{displaymath} in $\mathbf{H}$ exhibits a smooth[[∞-action]] of the [[circle 2-group]] on the [[moduli stack]] $\mathbf{B}U(n)$ and it exhibits an equivalence \begin{displaymath} \mathbf{B} PU(n) \simeq (\mathbf{B}U(n))//(\mathbf{B} U(1)) \end{displaymath} of the moduli stack of projective unitary bundles with the [[∞-quotient]] of this [[∞-action]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} For $X \in \mathbf{H}$ a [[smooth manifold]] and $\mathbf{c} \;\colon\; X \to \mathbf{B}^2 U(1)$ modulating a [[circle 2-group]]-[[principal 2-bundle]], maps \begin{displaymath} \mathbf{c} \to \mathbf{dd}_n \end{displaymath} in the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}^2 U(1)}$, hence [[diagrams]] of the form \begin{displaymath} \itexarray{ X &&\stackrel{}{\to}&& \mathbf{B} PU(n) \\ & {}_{\mathllap{\mathbf{c}}}\searrow &\swArrow& \swarrow_{\mathrlap{\mathbf{dd}_n}} \\ && \mathbf{B}^2 U(1) } \end{displaymath} in $\mathbf{H}$ are equivalently rank-$n$ unitary [[twisted bundles]] on $X$, with the twist being the class $[\mathbf{c}] \in H^3(X, \mathbb{Z})$. \end{prop} \begin{prop} \label{DifferentialRefinementOfSMoothDDClass}\hypertarget{DifferentialRefinementOfSMoothDDClass}{} There is a further differential refinement \begin{displaymath} \itexarray{ (\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn} &\stackrel{\widehat \mathbf{dd}_n}{\to}& \mathbf{B}^2 U(1)_{conn} \\ \downarrow && \downarrow \\ (\mathbf{B}U(n))//(\mathbf{B}U(1)) &\stackrel{\widehat \mathbf{dd}_n}{\to}& \mathbf{B}^2 U(1) } \,, \end{displaymath} where $\mathbf{B}^2 U(1)_{conn}$ is the universal moduli 2-stack of [[circle n-bundle with connection|circle 2-bundles with connection]] ([[bundle gerbes]] with connection). \end{prop} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \left( \left(\mathbf{B}U\left(n\right)//\mathbf{B}U\left(1\right)\right)_{conn} \stackrel{\mathbf{Fields}}{\to} \mathbf{B}^2 U\left(1\right)_{conn} \right) \;\; \in \mathbf{H}_{/\mathbf{B}^2 U(1)_{conn}} \end{displaymath} for the differential smooth universal Dixmier-Douady class of prop. \ref{DifferentialRefinementOfSMoothDDClass}, regarded as an object in the [[slice (∞,1)-topos]] over $\mathbf{B}^2 U(1)_{conn}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Let \begin{displaymath} \iota_X \;\colon\; Q \hookrightarrow X \end{displaymath} be an inclusion of [[smooth manifolds]] or of [[orbifolds]], to be thought of as a [[D-brane]] [[worldvolume]] $Q$ inside an ambient [[spacetime]] $X$. Then a \textbf{field configuration} of a \emph{[[B-field]]} on $X$ together with a compatible rank-$n$ \textbf{Chan-Paton gauge field} on the [[D-brane]] is a map \begin{displaymath} \phi \;\colon\; \iota_X \to \mathbf{Fields} \end{displaymath} in the [[arrow (∞,1)-topos]] $\mathbf{H}^{(\Delta^1)}$, hence a [[diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ Q &\stackrel{\nabla_{gauge}}{\to}& (\mathbf{B}U(n)//\mathbf{B}U(1)) \\ {}^{\iota_X}\downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\hat \mathbf{dd}_n}} \\ X &\stackrel{\nabla_B}{\to}& \mathbf{B}^2 U(1)_{conn} } \end{displaymath} \end{defn} This identifies a [[twisted bundle]] with connection on the D-brane whose twist is the class in $H^3(X, \mathbb{Z})$ of the bulk [[B-field]]. This relation is the Kapustin-part of the [[Freed-Witten-Kapustin anomaly]] cancellation for the [[bosonic string]] or else for the [[type II string]] on $Spin^c$ D-branes. (\hyperlink{FSS}{FSS}) \begin{remark} \label{}\hypertarget{}{} If we regard the [[B-field]] as a [[background field]] for the [[Chan-Paton gauge field]], then remark \ref{PullbackAlongGeneralizedLocalDiffeomorphisms} determines along which maps of the B-field the Chan-Paton gauge field may be transformed. \begin{displaymath} \itexarray{ Y &\stackrel{}{\to}& X &\stackrel{}{\to}& (\mathbf{B}U(n)//\mathbf{B}U(1))_{conn} \\ & \searrow & \downarrow & \swarrow \\ &&\mathbf{B}^2 U(1)_{conn} } \,. \end{displaymath} On the local connection forms this acts as \begin{displaymath} A \mapsto A + \alpha \,. \end{displaymath} \begin{displaymath} B \mapsto B + d \alpha \end{displaymath} This is the famous gauge transformation law known from the string theory literature. \end{remark} \hypertarget{the_open_string_sigmamodel}{}\subsubsection*{{The open string sigma-model}}\label{the_open_string_sigmamodel} \begin{remark} \label{}\hypertarget{}{} The [[D-brane]] inclusion $Q \stackrel{\iota_X}{\to} X$ is the [[target space]] for an [[open string]] with [[worldsheet]] $\partial \Sigma \stackrel{\iota_\Sigma}{\hookrightarrow} \Sigma$: a [[field (physics)|field]] configuration of the open string [[sigma-model]] is a map \begin{displaymath} \phi \;\colon\; \iota_\Sigma \to \iota_X \end{displaymath} in $\mathbf{H}^{\Delta^1}$, hence a [[diagram]] of the form \begin{displaymath} \itexarray{ \partial \Sigma &\stackrel{\phi_{bdr}}{\to}& Q \\ \downarrow^{\mathrlap{\iota_\Sigma}} &\swArrow& \downarrow^{\mathrlap{\iota_X}} \\ \Sigma &\stackrel{\phi_{bulk}}{\to}& X } \,. \end{displaymath} For $X$ and $Q$ ordinary [[manifolds]] just says that a field configuration is a map $\phi_{bulk} \;\colon\; \Sigma \to X$ subject to the constraint that it takes the [[boundary]] of $\Sigma$ to $Q$. This means that this is a [[trajectory]] of an [[open string]] in $X$ whose endpoints are constrained to sit on the [[D-brane]] $Q \hookrightarrow X$. If however $X$ is more generally an [[orbifold]], then the [[homotopy]] filling the above diagram imposes this constraint only up to orbifold transformations, hence exhibits what in the physics literature are called ``orbifold twisted sectors'' of open string configurations. \end{remark} \begin{prop} \label{TheTypeIIOpenStringSigmaModelModuliStackOfFields}\hypertarget{TheTypeIIOpenStringSigmaModelModuliStackOfFields}{} The [[moduli stack]] $[\iota_\Sigma, \iota_X]$ of such field configurations is the [[homotopy pullback]] \begin{displaymath} \itexarray{ [\iota_{\Sigma}, \iota_X] &\to& [\Sigma, X] \\ \downarrow &\swArrow& \downarrow \\ [S^1, Q] &\to& [S^1, X] } \,. \end{displaymath} \end{prop} \hypertarget{the_anomalyfree_open_string_coupling_to_the_chanpaton_gauge_field}{}\subsubsection*{{The anomaly-free open string coupling to the Chan-Paton gauge field}}\label{the_anomalyfree_open_string_coupling_to_the_chanpaton_gauge_field} \begin{prop} \label{}\hypertarget{}{} For $\Sigma$ a [[smooth manifold]] with [[boundary]] $\partial \Sigma$ of [[dimension]] $n$ and for $\nabla \;\colon \; X \to \mathbf{B}^n U(1)_{conn}$ a [[circle n-bundle with connection]] on some $X \in \mathbf{H}$, then the [[transgression]] of $\nabla$ to the [[mapping space]] $[\Sigma, X]$ yields a [[section]] of the [[complex line bundle]] [[associated bundle|associated]] to the pullback of the ordinary transgression over the mapping space out of the boundary: we have a diagram \begin{displaymath} \itexarray{ [\Sigma, X] &\stackrel{\exp(2 \pi i \int_{\Sigma})}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow^{\mathrlap{[\partial \Sigma, X]}} && \downarrow^{\mathrlap{\overline{\rho}}_{conn}} \\ [\partial \Sigma, X] &\stackrel{\exp(2 \pi i \int_{\partial \Sigma})}{\to}& \mathbf{B} U(1)_{conn} } \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} This is the \emph{[[higher parallel transport]]} of the $n$-connection $\nabla$ over maps $\Sigma \to X$. \end{remark} \begin{prop} \label{TheTwistedHolonomyMapOnTwistedUnitaryBundles}\hypertarget{TheTwistedHolonomyMapOnTwistedUnitaryBundles}{} The operation of forming the [[holonomy]] of a twisted unitary connection around a curve fits into a [[diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ [S^1, (\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn}] &\stackrel{hol_{S^1}}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow^{\mathrlap{[S^1, \widehat\mathbf{dd}_n]}} &\swArrow_{\simeq}& \downarrow^{\mathrlap{\overline{\rho}_{conn}}} \\ [S^1, \mathbf{B}^2 U(1)_{conn}] &\stackrel{\exp(2 \pi i \int_{S^1})}{\to}& \mathbf{B}U(1)_{conn} } \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[∞-action]]} the diagram in prop. \ref{TheTwistedHolonomyMapOnTwistedUnitaryBundles} says in particular that forming traced [[holonomy]] of twisted unitary bundles constitutes a [[section]] of the [[complex line bundle]] on the [[moduli stack]] of twisted unitary connection on the circle which is the [[associated bundle]] to the [[transgression]] $\exp(2 \pi i \int_{S^1} [S^1, \widehat\mathbf{dd}_n])$ of the universal differential [[Dixmier-Douady class]]. \end{remark} It follows that on the moduli space of the open string [[sigma-model]] of prop. \ref{TheTypeIIOpenStringSigmaModelModuliStackOfFields} above there are two $\mathbb{C}//U(1)$-valued [[action functionals]] coming from the bulk field and the boundary field \begin{displaymath} \itexarray{ [\iota_{\Sigma}, \iota_X] &\to& [\Sigma, X] &\stackrel{exp(2 \pi i \int_{\Sigma}[\Sigma, \nabla_B] ) }{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow &\swArrow& \downarrow \\ [S^1, Q] &\to& [S^1, X] \\ \downarrow^{\mathrlap{hol_{S^1}([S^1, \nabla_{gauge}])}} \\ \mathbb{C}//U(1)_{conn} } \,. \end{displaymath} Neither is a well-defined $\mathbb{C}$-valued function by itself. But by [[pasting]] the above diagrams, we see that both these constitute [[sections]] of the same [[complex line bundle]] on the moduli stack of fields: \begin{displaymath} \itexarray{ [\iota_{\Sigma}, \iota_X] &\to& [\Sigma, X] &\stackrel{[\Sigma, \nabla_B]}{\to}& [S^1, \mathbf{B}^2 U(1)_{conn}] &\stackrel{\exp(2 \pi i \int_{\Sigma})}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow &\swArrow& \downarrow && && \downarrow \\ [S^1, Q] &\to& [S^1, X] \\ \downarrow^{\mathrlap{[S^1, \nabla_{gauge}]}} && & \searrow^{\mathrlap{[S^1, \nabla_B]}} & && \downarrow \\ [S^1, (\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn}] & &\stackrel{[S^1, \widehat \mathbf{dd}_n]}{\to}& & [S^1, \mathbf{B}^2 U(1)_{conn}] \\ \downarrow^{\mathrlap{hol_{S^1}}} && && & \searrow^{\mathrlap{\exp(2 \pi i \int_{S^1}(-))}} \\ \mathbb{C}//U(1)_{conn} &\to& &\to& &\to& \mathbf{B}U(1)_{conn} } \,. \end{displaymath} Therefore the product action functional is a well-defined function \begin{displaymath} [\iota_\Sigma, \iota_X] \stackrel{ \exp(2 \pi i \int_{\Sigma} [\Sigma, \nabla_b] ) \cdot hol_{S^1}( [S^1, \widehat {\mathbf{dd}}_n] )^{-1} }{\to} U(1) \,. \end{displaymath} This is the [[Freed-Witten-Kapustin anomaly|Kapustin anomaly]]-free [[action functional]] of the [[open string]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[B-field]] \item [[twisted K-theory]] \item [[Freed-Witten anomaly cancellation]] \item [[Dirac-Born-Infeld action]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In the traditional physicist's string theory introductions one finds Chan-Paton bundles discussed for instance \begin{itemize}% \item [[Clifford Johnson]], section 2.4 of \emph{D-Brane primer} (\href{http://arxiv.org/abs/hep-th/0007170}{arXiv:hep-th/0007170}) \item David Tong, around p. 66 of \emph{Lectures on string theory} (\href{http://front.math.ucdavis.edu/0908.0333}{arxiv/0908.0333}) \end{itemize} These lectures tend to ignore most of the global subtleties though. For traditional discussion of the \emph{[[Freed-Witten-Kapustin anomaly]]}, see there. The above account in terms of [[higher geometry]] and [[extended prequantum field theory]] is due to section 5.4 of \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:A higher stacky perspective on Chern-Simons theory]]} . \end{itemize} Lecture notes along these lines are at \begin{itemize}% \item \emph{[[geometry of physics]]} \end{itemize} Discussion of the derivation of the [[Yang-Mills theory]] on the D-brane from open [[string scattering amplitudes]]/[[string field theory]] includes \begin{itemize}% \item [[David Gross]], [[Edward Witten]], \emph{Superstring modifications of Einstein's equations}, Nuclear Physics B Volume 277, 1986, Pages 1-10 \end{itemize} and for the non-abelian case: \begin{itemize}% \item Semyon Klevtsov, \emph{Yang-Mills theory from String field theory on D-branes} (\href{http://www.mi.uni-koeln.de/~klevtsov/cargese02.pdf}{pdf}) \end{itemize} [[!redirects Chan-Paton bundles]] [[!redirects Chan-Paton vector bundle]] [[!redirects Chan-Paton vector bundles]] [[!redirects Chan-Paton gauge field]] [[!redirects Chan-Paton gauge fields]] [[!redirects Chan-Paton gauge bundle]] [[!redirects Chan-Paton gauge bundles]] \end{document}