\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Cheng space} \hypertarget{cheng_spaces}{}\section*{{Cheng spaces}}\label{cheng_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{the_boolean_semialgebra_of_disjoint_pairs}{The Boolean semi-algebra of disjoint pairs}\dotfill \pageref*{the_boolean_semialgebra_of_disjoint_pairs} \linebreak \noindent\hyperlink{the_semialgebra_of_complemented_pairs}{The $\sigma$-semi-algebra of complemented pairs}\dotfill \pageref*{the_semialgebra_of_complemented_pairs} \linebreak \noindent\hyperlink{measurable_sets_and_functions}{Measurable sets and functions}\dotfill \pageref*{measurable_sets_and_functions} \linebreak \noindent\hyperlink{completion}{Completion}\dotfill \pageref*{completion} \linebreak \noindent\hyperlink{measures_on_cheng_spaces}{Measures on Cheng spaces}\dotfill \pageref*{measures_on_cheng_spaces} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A Cheng space is a version of a [[measurable space]] developed by [[Henry Cheng]] for [[constructive mathematics]]. Even in [[classical mathematics]], however, Cheng spaces are more general than standard measure spaces. On the other hand, if we equip a measurable space with a $\sigma$-[[sigma-ideal|ideal]] of [[null subsets]] (or a $\delta$-filter of [[full subsets]]), there is no essential difference classically. Some of the [[abstract nonsense]] below is original research (by [[Toby Bartels]] and [[Todd Trimble]]), but based heavily on Cheng's work as described in [[Handbook of Constructive Analysis|Bishop \& Bridges]]. \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} From a [[constructive mathematics|constructive]] perspective, there are a couple of related problems with the classical theory of measurable spaces. One is that the notion of $\sigma$-[[sigma-algebra|algebra]] is highly suspicious, because it relies on an operation, [[complement]]ation, that behaves very differently in [[intuitionistic logic]]. The other is that, even you accept the definition of $\sigma$-algebra (after all, the Lebesgue-measurable sets on the real line do still form one), there may be very few measurable functions. (It is possible in constructive mathematics that every function from the [[real line]] to itself, regardless of measurability, is [[continuous function|continuous]].) Indeed, if we set aside the general theory of measurable spaces and simply do Lebesgue measure ad hoc in a constructive (even predicative) way, we find that instead of measurable [[functions]] we really want measurable [[partial functions]] whose domain of definition is a [[full subset]], the [[almost functions]]. This suggests that if we want to define the concept of measurable function, then we have to know what the full sets are, so we need a measurable space equipped with such a notion. But since this is usually defined relative to a measure, well \emph{after} the structure of the measurable space has been given, we are at an impasse. There is a way out, due to [[Henry Cheng]], for both of these problems at once. Instead of dealing with individual subsets, we will deal with pairs of [[disjoint subsets]]. The intuition is that we use disjoint pairs $(A,B)$ such that $A \cup B$ is full ---with $(A,\neg{A})$ being the motivating example in the classical theory---, but we let the Cheng measurability structure itself tell us which pairs those are. Once we fix a particular measure, we may find additional pairs whose union is full, somewhat like finding additional measurable sets when taking the completion in the classical theory (although taking the completion is a separate phenomenon here), but that's all right; the important thing is that each pair chosen really is full in any measure used (much as each set in a classical $\sigma$-algebra must actually be measurable by any measure used). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $X$ be a [[set]]. We'll define the structure of a Cheng space on $X$ in several steps. \hypertarget{the_boolean_semialgebra_of_disjoint_pairs}{}\subsubsection*{{The Boolean semi-algebra of disjoint pairs}}\label{the_boolean_semialgebra_of_disjoint_pairs} A \textbf{[[disjoint subsets|disjoint pair]]} in $X$ is a pair $(A,B)$ of [[subsets]] of $X$ such that the [[intersection]] $A \cap B$ is [[empty subset|empty]]. Every set $A$ defines a disjoint pair $[A] = (A,\neg{A})$, but many disjoint pairs are not of this form; the extreme counterexample (unless $X$ is empty) is $(\empty,\empty)$. We order disjoint pairs by the usual order on the first component and the opposite on the second: \begin{displaymath} (A,B) \subseteq (C,D) \;\Leftrightarrow\; A \subseteq C \;\wedge\; B \supseteq D . \end{displaymath} Similarly, we make the usual operations on sets into operations on disjoint pairs by applying formal [[de Morgan duality]] to the second component: \begin{itemize}% \item $\empty = [\empty] = (\empty, X)$; \item $X = [X] = (X, \empty)$; \item $(A,B) \cup (C,D) = (A \cup C, B \cap D)$; \item $(A,B) \cap (C,D) = (A \cap C, B \cup D)$; \item $\bigcup_i (A_i,B_i) = (\bigcup_i A_i, \bigcap_i B_i)$; \item $\bigcap_i (A_i,B_i) = (\bigcap_i A_i, \bigcup_i B_i)$. \end{itemize} (Note that we do not write $[A]$ as $A$ except when $A$ is given as $\empty$ or $X$, because for example, $[A \cap B] = [A] \cap [B]$, while classically valid, may fail constructively.) These operations form the disjoint pairs into a [[lattice]]; in fact, it is both a [[complete lattice]] and a [[distributive lattice]], but it is not constructively completely distributive in either direction. (Compare the fact that a [[power set]] is, constructively, completely distributive only in one direction, making it a [[frame]]; here the directions are mixed by the formal duality and so neither works. On the other hand, that the power set is a frame is used to show that the infinitary operations do define disjoint pairs.) Finally, we define the [[complement]] of $(A,B)$, not using the complements of $A$ and $B$ (which usually are not even disjoint) but instead simply by reversing them: \begin{displaymath} \neg(A,B) = (B,A) . \end{displaymath} Then an actual [[de Morgan duality]] holds for these operations: \begin{itemize}% \item $\neg\bigcup_i (A_i,B_i) = \bigcap_i \neg(A_i,B_i)$; \item $\neg\bigcap_i (A_i,B_i) = \bigcup_i \neg(A_i,B_i)$; \item $\neg\neg(A,B) = (A,B)$, the famous [[double negation]] law. \end{itemize} We can go on to define the relative complement $(A,B) \setminus (C,D)$ and symmetric difference $(A,B) \uplus (C,D)$ in terms of complements, intersections, and unions as usual, and they obey many of the usual classical laws. (For instance, $\uplus$ is ---through a fairly lengthy calculation--- associative, which is not constructively true of [[symmetric difference]] on a power set.) At this point, the reader could be forgiven for thinking that we have cleverly pulled a [[Boolean algebra]] out of a mere [[Heyting algebra]], but this is not true; aside from the give-away that this lattice is not constructively completely distributive, it is not even classically a Boolean algebra. This is because $(A,B) \cup \neg(A,B) = (A \cup B, \empty)$ (and similarly for intersection) and there is no requirement that $A \cup B = X$. What we have instead is a complete Boolean [[rig]], aka semi-ring with unit; to keep consistent with the usual terminology of measure theory, I'll call such a thing a \textbf{Boolean semi-algebra}. This is all a special case of the [[Chu construction]]; the poset of disjoint pairs in $X$ is $Chu_{TV}(P X, \empty)$, where $TV$ is the [[enriched category|enriching]] category of [[truth values]]. \hypertarget{the_semialgebra_of_complemented_pairs}{}\subsubsection*{{The $\sigma$-semi-algebra of complemented pairs}}\label{the_semialgebra_of_complemented_pairs} Given a set $X$, a \textbf{$\sigma$-semi-algebra} on $X$ is a collection $\mathcal{M}$ of disjoint pairs in $X$, called \textbf{complemented pairs}, such that: 1. $[\empty] = (\empty,X)$ is a complemented pair; 2. If $(A,B)$ is a complemented pair, then so is its complement $(B,A)$; 3. If $(A_1,B_1), (A_2,B_2), (A_3,B_3), \ldots$ are complemented pairs, then so is their union $(\bigcup_i A_i, \bigcap_i B_i)$. The arguments above that $\mathcal{M}$ is closed under countable intersections, relative complements, and symmetric differences goes through. (We can also define analogous notions of semi-algebra, $\delta$-semi-ring, and other variations of $\sigma$-[[sigma-algebra|algebra]].) Finally, a \textbf{Cheng measurable space} or simply a \textbf{Cheng space} is a set equipped with a $\sigma$-semi-algebra. (Incidentally, the reason why we do not use the term `measurable pair' is that $A$ and $B$ may easily both be measurable in some sense yet without having $(A,B)$ as a complemented pair. In particular, $(\empty,\empty)$ is rarely a complemented pair ---although that is not forbidden either---, yet it is hard to call it non-measurable.) \hypertarget{measurable_sets_and_functions}{}\subsubsection*{{Measurable sets and functions}}\label{measurable_sets_and_functions} A [[subset]] $A$ of a Cheng space $X$ is \textbf{[[measurable subset|measurable]]} if there is some complemented pair $(A,B)$. A subset $S$ is \textbf{[[full subset|full]]} if, for some complemented pair $(A,B)$, $S$ contains the [[union]] $A \cup B$. Conversely, $S$ is \textbf{[[null subset|null]]} if, for some such $(A,B)$, $S$ is disjoint from $A \cup B$. Given two Cheng measurable spaces $X$ and $Y$, an \textbf{[[almost function]]} from $X$ to $Y$ is a [[partial function]] from $X$ to $Y$ such that the [[domain]] of $f$ is full. An almost function is \textbf{[[measurable function|measurable]]} if, given any complemented pair $(C,D)$ in $Y$, there is a complemented pair $(A,B)$ such that $\{p\colon X \;|\; p \in A \iff f(p) \in C\}$ and $\{p\colon X \;|\; p \in B \iff f(p) \in D)$ are both full. Two (measurable) functions are \textbf{[[almost equal]]} if their [[equaliser]] is full. Cheng spaces, measurable almost functions between them, and almost equality between them form a [[category]] $Cheng Sp$. \hypertarget{completion}{}\subsection*{{Completion}}\label{completion} A Cheng space is \textbf{[[complete measure space|complete]]} if, whenever $(A,B)$ is a complemented pair and $A \Leftrightarrow C$ and $B \Leftrightarrow D$ are full, then $(C,D)$ is a complemented pair. In particular, every full set and every null set is measurable. Given any Cheng space $(X,\mathcal{M})$, its \textbf{completion} $(X,\bar{\mathcal{M}})$ has the same [[underlying set]] $X$ but a disjoint pair $(C,D)$ is $\bar{\mathcal{M}}$-complemented iff, for some $\mathcal{M}$-complemented pair $(A,B)$, both $A \Leftrightarrow C$ and $B \Leftrightarrow D$ are $\mathcal{M}$-full. A Cheng space is complete iff it is its own completion; the completion of any Cheng space is complete. The [[identity function]] on $X$ is measurable in either direction between $(X,\mathcal{M})$ and $(X,\bar{\mathcal{M}})$, so they are [[isomorphic]] in $Cheng Sp$. Accordingly, the [[full subcategory]] of $Cheng Sp$ on the complete spaces is [[equivalence of categories|equivalent]] to $Cheng Sp$ itself (via its [[inclusion functor]]). When restricted to complete spaces, the definition of measurable function is simpler: any partial function under which the [[preimage]] of any complemented pair is complemented. \hypertarget{measures_on_cheng_spaces}{}\subsection*{{Measures on Cheng spaces}}\label{measures_on_cheng_spaces} We will define the notion of a [[positive measure]] on a Cheng space; it's straightforward to generalise to other sorts of measures as described at [[measure]]. Given a Cheng space $(X,\mathcal{M})$, a \textbf{positive measure} on $(X,\mathcal{M})$ is a [[function]] $\mu$ from $\mathcal{M}$ to $[0,\infty]$ such that: \begin{itemize}% \item [[absolutely continuous measure|absolute continuity]]: $\mu(A,B) = 0$ if $B$ is full; \item [[inclusion-exclusion]]: $\mu(A \cap C, B \cup D) + \mu(A \cup C, B \cap D) = \mu(A,B) + \mu(C,D)$; \item [[subadditive function|subadditivity]]: $\mu(\bigcup_i A_i, \bigcap_i B_i) \leq \sum_i \mu(A_i,B_i)$ for an [[infinite sequence]] of complemented pairs. \end{itemize} We think of $\mu(A,B)$ as the measure of $A$; thanks to absolute continuity, either $A$ or $B$ alone is enough to determine $\mu(A,B)$. [[!redirects Cheng space]] [[!redirects Cheng spaces]] [[!redirects Cheng measurable space]] [[!redirects Cheng measurable spaces]] [[!redirects boolean semialgebra]] [[!redirects boolean semialgebras]] [[!redirects boolean semi-algebra]] [[!redirects boolean semi-algebras]] [[!redirects Boolean semialgebra]] [[!redirects Boolean semialgebras]] [[!redirects Boolean semi-algebra]] [[!redirects Boolean semi-algebras]] \end{document}