\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chern character} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{KTheory}{For vector bundles and topological K-theory}\dotfill \pageref*{KTheory} \linebreak \noindent\hyperlink{for_spectra_and_generalized_cohomology_theories}{For spectra and generalized cohomology theories}\dotfill \pageref*{for_spectra_and_generalized_cohomology_theories} \linebreak \noindent\hyperlink{for_cohesive_stable_homotopy_types}{For cohesive stable homotopy types}\dotfill \pageref*{for_cohesive_stable_homotopy_types} \linebreak \noindent\hyperlink{in_terms_of_cyclic_homology}{In terms of cyclic homology}\dotfill \pageref*{in_terms_of_cyclic_homology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{pushforward_and_grothendieckriemannroch_theorem}{Push-forward and Grothendieck-Riemann-Roch theorem}\dotfill \pageref*{pushforward_and_grothendieckriemannroch_theorem} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Traditionally, in the strict sense of the term, the \emph{Chern character} is a [[universal characteristic class]] of [[vector bundles]] or equivalently of their [[topological K-theory]] classes, which is a [[rational number|rational]] combination of all [[Chern classes]]. This is a special case of the following more general construction ([[Quadratic Functions in Geometry, Topology,and M-Theory|Hopkins-Singer 02, section 4.8]]): for $E$ a [[spectrum]] [[Brown representability theorem|representing]] a [[generalized (Eilenberg-Steenrod) cohomology theory]] there is a canonical [[localization of spectra|localization]] map \begin{displaymath} ch_E \;\colon\; E \longrightarrow E \wedge H\mathbb{R} \end{displaymath} to the [[smash product]] with the [[Eilenberg-MacLane spectrum]] over the [[real numbers]]. This represents the $E$-Chern character (see also \hyperlink{BunkeGepner13}{Bunke-Gepner 13, around def. 2.1}). In the case that $E =$ [[KU]] this reproduces the traditional Chern character. (In which case this is a map from a [[complex oriented cohomology theory]] of [[chromatic level]] 1 to chromatic level 0. More generally one can also consider [[higher chromatic Chern characters]] that take values not in [[ordinary cohomology]] but in some cohomology theory of higher [[chromatic level]]. See at \emph{[[higher chromatic Chern character]]} for more on this.) The Chern character $ch_E$ may be used to define [[differential cohomology]] refinements $\hat E$ of the [[cohomology theory]] $E$ by choosing a [[differential form]]-model for $E \wedge H\mathbb{R}$ (\hyperlink{HopkinsSinger02}{Hopkins-Singer 02}, see also at \emph{[[differential function complex]]}). In that case $ch_E$ is the [[real cohomology]] class associated to a \emph{chern character differential form} $CH_E$ via the [[de Rham theorem]]. Here $CH_E$ has the interpretation of being the [[curvature forms]] of the [[differential cohomology]] [[cocycles]] thought of as [[connection on a principal ∞-bundle|∞-connections]]. This may be turned around (\hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-V\"o{}lkl 13, prop. .3.5}): given any refinement $\hat E$ of $E$ in a [[tangent cohesive (∞,1)-topos]] $T \mathbf{H}$, then it is induced from homotopy pullback of its \href{cohesive+%28infinity%2C1%29-topos+--+structures#deRhamCohomology}{de Rham coefficients} along a Chern character map \begin{displaymath} ch_E = \Pi \theta_{\hat E} \;\colon\; E \simeq \Pi(\hat E) \longrightarrow \Pi \flat_{dR} \hat E \,, \end{displaymath} where $\Pi$ is the [[shape modality]] and $\theta_E$ the [[Maurer-Cartan form]] of $E$. This reproduces the above definition for ordinary differential form models, see at \emph{\hyperlink{differential+cohomology+diagram#HopkinsSingerCoefficients}{differential cohomology diagram -- Hopkins-Singer coefficients}}. But more generally, given for instance a [[K(n)-local spectrum|K(n)-localization]] $E \longrightarrow L_{K(n)} E$ then any choice of [[cohesion|cohesive]] refinement of $L_{K(n)} E$ (i.e. lift through the [[unit of a monad|unit]] of the [[shape modality]] $\Pi$) which is in the kernel of $\flat$ yields a generalized differential cohomology theory $\hat E$ whose intrinsic Chern-character $\Pi \theta_{\hat E}$ is the $K(n)$-localization. See at \emph{\href{differential+cohomology+diagram#ChernCharacterAndFractureSquares}{differential cohomology diagram -- Chern character and differential fracture}}. In words this is summarized succintly as: \emph{The Chern character is the [[shape modality|shape]] of the [[Maurer-Cartan form]].} In the context of [[algebraic K-theory]] Chern characters appear at \emph{[[Beilinson regulators]]}. There are analogues in algebraic geometry (e.g. a Chern character between [[Chow groups]] and [[algebraic K-theory]]) and in [[noncommutative geometry]] (Chern-Connes character) where the role of usual cohomology is taken by some variant of cyclic cohomology. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{KTheory}{}\subsubsection*{{For vector bundles and topological K-theory}}\label{KTheory} The classical theory of the Chern character applies to the [[spectrum]] of complex [[K-theory]], $E = KU$. In this case, the Chern character is made up from Chern classes: each characteristic class is by Chern-Weil theory in the image of a certain element in the Weil algebra via taking the class of evaluation at the [[curvature]] operator for some choice of a connection. Consider the symmetric functions in $n$ variables $t_1,\ldots, t_n$ and let the Chern classes of a complex vector bundle $\xi$ (representing a complex K-theory class) be $c_1,\ldots, c_n$. Define the formal power series \begin{displaymath} \phi = \phi^n(t_1,\ldots, t_n) = e^{t_1}+\ldots+e^{t_n}= \sum_{k=0}^\infty \frac{1}{k!} (t_1^k+\ldots+t_n^k) \end{displaymath} Then $ch(\chi) = \phi(c_1,\ldots,c_n)$. Let us describe this a bit differently. The cocycle $H^0(X,KU)$ may be represented by a complex [[vector bundle]], and the image of this cocycle under the Chern-character is the class in even-graded real cohomology that is represented (under the [[deRham theorem]] isomorphism of deRham cohomology with real cohomology) by the even graded closed [[differential form]] \begin{displaymath} ch(\nabla) := \sum_{j \in \mathbb{N}} k_j tr( F_\nabla \wedge \cdots \wedge F_\nabla) \;\; \in \Omega^{2 \bullet}(X) \,, \end{displaymath} where \begin{itemize}% \item $\nabla$ is any chosen [[connection on a bundle|connection]] on the vector bundle; \item $F = F_\nabla \in \Omega^2(X,End(V))$ is the [[curvature]] of this connection; \item $k_j \in \mathbb{R}$ are normalization constants, $k_j = \frac{1}{j!} \left( \frac{1}{2\pi i}\right)^j$; \item the trace of the wedge products produces the [[curvature characteristic form]]s. \end{itemize} The Chern character applied to the [[Whitney sum]] of two vector bundles is a sum of the Chern characters for the two: $ch(\xi\oplus \eta) = ch(\chi)+ch(\eta)$ and it is multiplicative under the tensor product of vector bundles: $ch(\xi\otimes\eta)=ch(\chi)ch(\eta)$. Therefore we get a ring homomorphism. \hypertarget{for_spectra_and_generalized_cohomology_theories}{}\subsubsection*{{For spectra and generalized cohomology theories}}\label{for_spectra_and_generalized_cohomology_theories} Let $E$ be a [[spectrum]] The [[isomorphism]] \begin{displaymath} H(-,E)\otimes \mathbb{R} \;\; \stackrel{\simeq}{\to} \;\; H(-,(\pi_* E)\otimes \mathbb{R}) \end{displaymath} that defines the Chern-character map is induced by a canonical cocycle on the [[spectrum]] $E$ that is called the \textbf{fundamental cocycle}. This is described for instance in section \href{http://arxiv.org/PS_cache/math/pdf/0211/0211216v2.pdf#page=47}{4.8, page 47} of Hopkins-Singer [[Quadratic Functions in Geometry, Topology,and M-Theory]]. \hypertarget{for_cohesive_stable_homotopy_types}{}\subsubsection*{{For cohesive stable homotopy types}}\label{for_cohesive_stable_homotopy_types} More generally, for $\hat E$ a [[stable homotopy type]] in a [[cohesive (∞,1)-topos]], then the underlying bare homotopy type is $E \coloneqq \Pi(\hat E)$ and the corresponding Chern character is \begin{displaymath} ch \coloneqq \Pi \theta_{\hat E} \;\colon\; E \simeq \Pi(\hat E) \longrightarrow \Pi \flat_{dR} \hat E \,. \end{displaymath} For more on this see at \emph{[[differential cohomology diagram]]}. \hypertarget{in_terms_of_cyclic_homology}{}\subsubsection*{{In terms of cyclic homology}}\label{in_terms_of_cyclic_homology} Generalizing in another direction, generalized Chern characters are given by passage to [[derived loop spaces]] and their [[cyclic homology]] or, more generally, [[topological cyclic homology]] (\hyperlink{ToenVezzosi08}{Toen-Vezzosi 08}, \hyperlink{HoyoisScherotzkeSibillia15}{Hoyois-Scherotzke-Sibillia 15}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{pushforward_and_grothendieckriemannroch_theorem}{}\subsubsection*{{Push-forward and Grothendieck-Riemann-Roch theorem}}\label{pushforward_and_grothendieckriemannroch_theorem} The behaviour of the Chern-character under [[fiber integration in generalized cohomology]] along [[proper maps]] is described by the [[Grothendieck-Riemann-Roch theorem]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[odd Chern character]] \item for [[algebraic K-theory]]: \begin{itemize}% \item [[cyclotomic trace]] \item [[regulator]], [[Beilinson regulator]] \end{itemize} \item [[Grothendieck-Riemann-Roch theorem]] \item [[higher chromatic Chern character]] \begin{itemize}% \item [[elliptic Chern character]] \item [[Morava E-theoretic Chern character]] \end{itemize} \item [[transchromatic character]] \item [[group character]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The universal Chern character for [[generalized (Eilenberg-Steenrod) cohomology theory]] is discussed in section \href{http://arxiv.org/PS_cache/math/pdf/0211/0211216v2.pdf#page=47}{4.8, page 47} of \begin{itemize}% \item [[Mike Hopkins]], [[Isadore Singer]], \emph{[[Quadratic Functions in Geometry, Topology,and M-Theory]]}, (\href{http://arxiv.org/abs/math.AT/0211216}{math.AT/0211216}). \end{itemize} in the context of [[differential cohomology]] via [[differential function complexes]]. The observation putting this into the general context of [[differential cohomology diagrams]] (see there) of [[stable homotopy types]] in [[cohesion]] is due to \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], section 4.4. of \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} based on \begin{itemize}% \item [[Ulrich Bunke]], [[David Gepner]], around def, 2.1 of \emph{Differential function spectra, the differential Becker-Gottlieb transfer, and applications to differential algebraic K-theory} (\href{http://arxiv.org/abs/1306.0247}{arXiv:1306.0247}) \end{itemize} A characterization of Chern-character maps for [[K-theory]] is in \begin{itemize}% \item [[Goncalo Tabuada]], \emph{A universal characterization of the Chern character maps} (\href{http://arxiv.org/abs/1002.3726}{arXiv/1002.3276}) \end{itemize} Discussion for [[equivariant K-theory]]: \begin{itemize}% \item German Stefanich, \emph{Chern Character in Twisted and Equivariant K-Theory} (\href{https://math.berkeley.edu/~germans/Chern2.pdf}{pdf}) \end{itemize} A discussion of Chern characters in terms of [[free loop space objects]] in [[derived geometry]] is in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{A note on Chern character, loop spaces and derived algebraic geometry} (\href{http://arxiv.org/abs/0804.1274}{arXiv:0804.1274}) \end{itemize} which conjectures a construction that is fully developed in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Caract\`e{}res de Chern, traces \'e{}quivariantes et g\'e{}om\'e{}trie alg\'e{}brique d\'e{}riv\'e{}e} (\href{http://arxiv.org/abs/0903.3292}{arXiv:0903.3292}) \end{itemize} See also \begin{itemize}% \item [[Marc Hoyois]], \emph{Chern character and derived algebraic geometry} (2009) (\href{http://math.mit.edu/~hoyois/papers/chern.pdf}{pdf}) \item [[Marc Hoyois]], [[Sarah Scherotzke]], [[Nicolò Sibilla]], \emph{Higher traces, noncommutative motives, and the categorified Chern character} (\href{http://arxiv.org/abs/1511.03589}{arXiv:1511.03589}) \end{itemize} [[!redirects Chern characters]] [[!redirects Chern character map]] [[!redirects Chern character maps]] \end{document}