\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chern class} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{existence}{Existence}\dotfill \pageref*{existence} \linebreak \noindent\hyperlink{first_chern_class}{First Chern class}\dotfill \pageref*{first_chern_class} \linebreak \noindent\hyperlink{SplittingPrinciple}{Splitting principle and Chern roots}\dotfill \pageref*{SplittingPrinciple} \linebreak \noindent\hyperlink{WhitneySumFormula}{Whitney sum formula}\dotfill \pageref*{WhitneySumFormula} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ChernClassesOfLinearRepresentations}{Chern classes of linear representations}\dotfill \pageref*{ChernClassesOfLinearRepresentations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The ordinary \emph{Chern classes} are the [[integral cohomology|integral]] [[characteristic classes]] \begin{displaymath} c_i : B U \to B^{2 i} \mathbb{Z} \end{displaymath} of the [[classifying space]] $B U$ of the [[unitary group]]. Accordingly these are characteristic classes in [[ordinary cohomology]] of [[unitary group|U]]-[[principal bundles]] and hence of [[complex vector bundle]] The first Chern class is the unique characteristic class of [[circle group]]-principal bundles. The analogous classes for the [[orthogonal group]] are the [[Pontryagin classes]]. More generally, there are \emph{[[generalized Chern classes]]} for any [[complex oriented cohomology theory]] (\hyperlink{Adams74}{Adams 74}, \hyperlink{Lurie10}{Lurie 10}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $n \geq 1$ the \emph{[[universal characteristic classes|universal]] Chern [[characteristic classes|classes]]} \begin{displaymath} c_i \;\in\; H^{2i} \big( B U(n), \mathbb{Z} \big) \end{displaymath} of the [[classifying space]] $B U(n)$ of the [[unitary group]] are the [[cohomology classes]] of $B U(n)$ in [[integral cohomology]] that are characterized as follows: \begin{enumerate}% \item $c_0 = 1$ and $c_i = 0$ if $i \gt n$; \item for $n = 1$, $c_1$ is the canonical generator of $H^2(B U(1), \mathbb{Z})\simeq \mathbb{Z}$; \item under pullback along the inclusion $i : B U(n) \to B U(n+1)$ we have $i^* c_i^{(n+1)} = c_i^{(n)}$; \item under the inclusion $B U(k) \times B U(l) \to B U(k+l)$ we have $i^* c_i = \sum_{j = 0}^i c_i \cup c_{j-i}$. \end{enumerate} The corresponding \emph{total Chern class} is the formal sum \begin{displaymath} c \;\coloneqq\; 1 + c_1 + c+2 + \cdots \;\in\; \underset{k}{\prod} H^{2k} \big( B U(n) \big) \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{existence}{}\subsubsection*{{Existence}}\label{existence} \begin{prop} \label{GeneratorsOfCohomologyOfBunChernClasses}\hypertarget{GeneratorsOfCohomologyOfBunChernClasses}{} The [[cohomology ring]] of the [[classifying space]] $B U(n)$ (for the [[unitary group]] $U(n)$) is the [[polynomial ring]] on generators $\{c_k\}_{k = 1}^{n}$ of degree 2, called the \emph{Chern classes} \begin{displaymath} H^\bullet(B U(n), \mathbb{Z}) \simeq \mathbb{Z}[c_1, \cdots, c_n] \,. \end{displaymath} Moreover, for $B i \colon B U(n_1) \longrightarrow BU(n_2)$ the canonical inclusion for $n_1 \leq n_2 \in \mathbb{N}$, then the induced pullback map on cohomology \begin{displaymath} (B i)^\ast \;\colon\; H^\bullet(B U(n_2)) \longrightarrow H^\bullet(B U(n_1)) \end{displaymath} is given by \begin{displaymath} (B i)^\ast(c_k) \;=\; \left\{ \itexarray{ c_k & for \; 1 \leq k \leq n_1 \\ 0 & otherwise } \right. \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Kochmann96}{Kochmann 96, theorem 2.3.1}) \begin{proof} For $n = 1$, in which case $B U(1) \simeq \mathbb{C}P^\infty$ is the infinite [[complex projective space]], we have (\href{complex+projective+space#OrdinaryCohomologyOfComplexProjectiveSpace}{prop}) \begin{displaymath} H^\bullet(B U(1)) \simeq \mathbb{Z}[ c_1 ] \,, \end{displaymath} where $c_1$ is the [[first Chern class]]. From here we proceed by [[induction]]. So assume that the statement has been shown for $n-1$. Observe that the canonical map $B U(n-1) \to B U(n)$ has as [[homotopy fiber]] the [[n-sphere|(2n-1)sphere]] (\href{classifying+space#SphereFibrationOverInclusionOfClassifyingSpaces}{prop.}) hence there is a [[homotopy fiber sequence]] of the form \begin{displaymath} S^{2n-1} \longrightarrow B U(n-1) \longrightarrow B U(n) \,. \end{displaymath} Consider the induced [[Thom-Gysin sequence]]. In odd degrees $2k+1 \lt 2n$ it gives the [[exact sequence]] \begin{displaymath} \cdots \to H^{2k}(B U(n-1)) \longrightarrow \underset{\simeq 0}{\underbrace{H^{2k+1-2n}(B U(n))}} \longrightarrow H^{2k+1}(B U(n)) \overset{(B i)^\ast}{\longrightarrow} \underset{\simeq 0}{\underbrace{H^{2k+1}(B U(n-1))}} \to \cdots \,, \end{displaymath} where the right term vanishes by induction assumption, and the middle term since [[ordinary cohomology]] vanishes in negative degrees. Hence \begin{displaymath} H^{2k+1}(B U(n)) \simeq 0 \;\;\; for \; 2k+1 \lt 2n \end{displaymath} Then for $2k+1 \gt 2n$ the Thom-Gysin sequence gives \begin{displaymath} \cdots \to H^{2k+1-2n}(B U(n)) \longrightarrow H^{2k+1}(B U(n)) \overset{(B i)^\ast}{\longrightarrow} \underset{\simeq 0}{\underbrace{H^{2k+1}(B U(n-1))}} \to \cdots \,, \end{displaymath} where again the right term vanishes by the induction assumption. Hence [[exact sequence|exactness]] now gives that \begin{displaymath} H^{2k+1-2n}(B U(n)) \overset{}{\longrightarrow} H^{2k+1}(B U(n)) \end{displaymath} is an [[epimorphism]], and so with the previous statement it follows that \begin{displaymath} H^{2k+1}(B U(n)) \simeq 0 \end{displaymath} for all $k$. Next consider the Thom Gysin sequence in degrees $2k$ \begin{displaymath} \cdots \to \underset{\simeq 0}{\underbrace{H^{2k-1}(B U(n-1))}} \longrightarrow H^{2k-2n}(B U(n)) \longrightarrow H^{2k}(B U(n)) \overset{(B i)^\ast}{\longrightarrow} H^{2k}(B U(n-1)) \longrightarrow \underset{\simeq 0}{\underbrace{H^{2k +1 - 2n}(B U(n))}} \to \cdots \,. \end{displaymath} Here the left term vanishes by the induction assumption, while the right term vanishes by the previous statement. Hence we have a [[short exact sequence]] \begin{displaymath} 0 \to H^{2k-2n}(B U(n)) \longrightarrow H^{2k}(B U(n)) \overset{(B i)^\ast}{\longrightarrow} H^{2k}(B U(n-1)) \to 0 \end{displaymath} for all $k$. In degrees $\bullet\leq 2n$ this says \begin{displaymath} 0 \to \mathbb{Z} \overset{c_n \cup (-)}{\longrightarrow} H^{\bullet \leq 2n}(B U(n)) \overset{(B i)^\ast}{\longrightarrow} (\mathbb{Z}[c_1, \cdots, c_{n-1}])_{\bullet \leq 2n} \to 0 \end{displaymath} for some [[Thom class]] $c_n \in H^{2n}(B U(n))$, which we identify with the next Chern class. Since [[free abelian groups]] are [[projective objects]] in [[Ab]], their [[extensions]] are all split (the [[Ext]]-group out of them vanishes), hence the above gives a [[direct sum]] decomposition \begin{displaymath} \begin{aligned} H^{\bullet \leq 2n}(B U(n)) & \simeq (\mathbb{Z}[c_1, \cdots, c_{n-1}])_{\bullet \leq 2n} \oplus \mathbb{Z}\langle 2n\rangle \\ & \simeq (\mathbb{Z}[c_1, \cdots, c_{n}])_{\bullet \leq 2n} \end{aligned} \,. \end{displaymath} Now by another induction over these short exact sequences, the claim follows. \end{proof} \hypertarget{first_chern_class}{}\subsubsection*{{First Chern class}}\label{first_chern_class} \begin{itemize}% \item The [[first Chern class]] of a bundle $P$ is the class of its [[determinant line bundle]] $det P$ \begin{displaymath} c_1(P) = [det P] \,. \end{displaymath} See [[determinant line bundle]] for more. \end{itemize} \hypertarget{SplittingPrinciple}{}\subsubsection*{{Splitting principle and Chern roots}}\label{SplittingPrinciple} Under the [[splitting principle]] all Chern classes are determnined by [[first Chern classes]]: Write $i \colon T \simeq U(1)^n \hookrightarrow U(n)$ for the [[maximal torus]] inside the [[unitary group]], which is the [[subgroup]] of [[diagonal matrix|diagonal]] unitary matrices. Then \begin{displaymath} H^\bullet(B T, \mathbb{Z}) \simeq H^\bullet(B U(1)^n, \mathbb{Z}) \end{displaymath} is the [[polynomial ring]] in $n$ [[generators]] (to be thought of as the universal [[first Chern classes]] $c_i$ of each copy of $B U(1)$; equivalently as the \href{group+character#RelationToChernRootsAndSplittingPrinciple}{weights} of the [[group characters]] of $U(n)$) which are traditionally written $x_i$: \begin{displaymath} H^\bullet(B U(1)^n, \mathbb{Z}) \simeq \mathbb{Z}[x_1, \cdots, x_n] \,. \end{displaymath} Write \begin{displaymath} B i \;\colon\; B U(1)^n \to B U(n) \end{displaymath} for the induced map of [[deloopings]]/[[classifying spaces]], then the $k$-universal Chern class $c_k \in H^{2k}(B U(n), \mathbb{Z})$ is uniquely characterized by the fact that its pullback to $B U(1)^n$ is the $k$th [[elementary symmetric polynomial]] $\sigma_k$ applied to these first Chern classes: \begin{displaymath} (B i)^\ast (c_k) = \sigma_k(x_1, \cdots, x_n) \,. \end{displaymath} Equivalently, for $c = \sum_{i = 1}^n c_k$ the formal sum of all the Chern classes, and using the fact that the [[elementary symmetric polynomials]] $\sigma_k(x_1, \cdots, k_n)$ are the degree-$k$ piece in $(1+x_1) \cdots (1+x_n)$, this means that \begin{displaymath} (B i)^\ast (c) = (1+x_1) (1+ x_2) \cdots (1+ x_n) \,. \end{displaymath} Since here on the right the first Chern classes $x_i$ appear as the [[roots]] of the Chern polynomial, they are also called \textbf{Chern roots}. See also at \emph{\href{splitting+principle#ComplexVectorBundleAndTheirChernRoots}{splitting principle -- Examples -- Complex vector bundles and their Chern roots}}. (e.g. \hyperlink{Kochmann96}{Kochmann 96, theorem 2.3.2}, \hyperlink{tomDieck08}{tom Dieck 08, theorem 19.3.2}) \begin{lemma} \label{FromBUnTOBU1nPullbackInCohomologyIsInjective}\hypertarget{FromBUnTOBU1nPullbackInCohomologyIsInjective}{} For $n \in \mathbb{N}$ let $B \iota_n \;\colon\; B (U(1)^n) \longrightarrow B U(n)$ be the canonical map. Then the induced pullback operation on [[ordinary cohomology]] \begin{displaymath} \left( B \iota_n \right) \;\colon\; H^\bullet( B U(n); \mathbb{Z} ) \longrightarrow H^\bullet( B U(1)^n; \mathbb{Z} ) \end{displaymath} is a [[monomorphism]]. \end{lemma} A \textbf{[[proof]]} of lemma \ref{FromBUnTOBU1nPullbackInCohomologyIsInjective} , via analysis of the [[Serre spectral sequence]] of $U(n)/U(1)^n \to B U(1)^n \to B U(n)$ is indicated in (\hyperlink{Kochmann96}{Kochmann 96, p. 40}). A proof via [[Becker-Gottlieb transfer|transfer]] of the [[Euler class]] of $U(n)/U(1)^n$, following (\hyperlink{Dupont78}{Dupont 78, (8.28)}), is indicated at \emph{[[splitting principle]]} (\href{splitting+principle#InjectivityOfPullbackInCohomologyToBT}{here}). \begin{prop} \label{SplittingPrincipleForChernClasses}\hypertarget{SplittingPrincipleForChernClasses}{} For $k \leq n \in \mathbb{N}$ let $B \iota_n \;\colon\; B (U(1)^n) \longrightarrow B U(n)$ be the canonical map. Then the induced pullback operation on [[ordinary cohomology]] is of the form \begin{displaymath} (B i_n)^\ast \;\colon\; \mathbb{Z}[c_1, \cdots, c_k] \longrightarrow \mathbb{Z}[(c_1)_1,\cdots (c_1)_n] \end{displaymath} and sends the $k$th Chern class $c_k$ (def. \ref{GeneratorsOfCohomologyOfBunChernClasses}) to the $k$th [[elementary symmetric polynomial]] in the $n$ copies of the [[first Chern class]]: \begin{displaymath} (B i_n)^\ast \;\colon\; c_k \mapsto \sigma_k( (c_1)_1, \cdots, (c_1)_n ) \,. \end{displaymath} \end{prop} \begin{proof} First consider the case $n = 1$. The [[classifying space]] $B U(1)$ is equivalently the infinite [[complex projective space]] $\mathbb{C}P^\infty$. Its [[ordinary cohomology]] is the [[polynomial ring]] on a single generator $c_1$, the [[first Chern class]] (\href{complex+projective+space#OrdinaryCohomologyOfComplexProjectiveSpace}{prop.}) \begin{displaymath} H^\bullet(B U(1)) \simeq \mathbb{Z}[ c_1 ] \,. \end{displaymath} Moreover, $B i_1$ is the identity and the statement follows. Now by the [[Künneth theorem]] for ordinary cohomology (\href{K%C3%BCnneth+theorem#KunnethInOrdinaryCohomology}{prop.}) the cohomology of the [[Cartesian product]] of $n$ copies of $B U(1)$ is the [[polynomial ring]] in $n$ generators \begin{displaymath} H^\bullet(B U(1)^n) \simeq \mathbb{Z}[(c_1)_1, \cdots, (c_1)_n] \,. \end{displaymath} By prop. \ref{GeneratorsOfCohomologyOfBunChernClasses} the domain of $(B i_n)^\ast$ is the [[polynomial ring]] in the Chern classes $\{c_i\}$, and by the previous statement the codomain is the polynomial ring on $n$ copies of the first Chern class \begin{displaymath} (B i_n)^\ast \;\colon\; \mathbb{Z}[ c_1, \cdots, c_n ] \longrightarrow \mathbb{Z}[ (c_1)_1, \cdots, (c_1)_n ] \,. \end{displaymath} This allows to compute $(B i_n)^\ast(c_k)$ by [[induction]]: Consider $n \geq 2$ and assume that $(B i_{n-1})^\ast_{n-1}(c_k) = \sigma_k((c_1)_1, \cdots, (c_1)_{(n-1)})$. We need to show that then also $(B i_n)^\ast(c_k) = \sigma_k((c_1)_1,\cdots, (c_1)_n)$. Consider then the [[commuting diagram]] \begin{displaymath} \itexarray{ B U(1)^{n-1} &\overset{ B i_{n-1} }{\longrightarrow}& B U(n-1) \\ {}^{\mathllap{B j_{\hat t}}}\downarrow && \downarrow^{\mathrlap{B i_{\hat t}}} \\ B U(1)^n &\underset{B i_n}{\longrightarrow}& B U(n) } \end{displaymath} where both vertical morphisms are induced from the inclusion \begin{displaymath} \mathbb{C}^{n-1} \hookrightarrow \mathbb{C}^n \end{displaymath} which omits the $t$th coordinate. Since two embeddings $i_{\hat t_1}, i_{\hat t_2} \colon U(n-1) \hookrightarrow U(n)$ differ by [[conjugation]] with an element in $U(n)$, hence by an [[inner automorphism]], the maps $B i_{\hat t_1}$ and $B_{\hat i_{t_2}}$ are [[homotopy|homotopic]], and hence $(B i_{\hat t})^\ast = (B i_{\hat n})^\ast$, which is the morphism from prop. \ref{GeneratorsOfCohomologyOfBunChernClasses}. By that proposition, $(B i_{\hat t})^\ast$ is the identity on $c_{k \lt n}$ and hence by induction assumption \begin{displaymath} \begin{aligned} (B i_{n-1})^\ast (B i_{\hat t})^\ast c_{k \lt n} &= (B i_{n-1})^\ast c_{k \lt n} \\ = \sigma_k( (c_1)_1, \cdots, \widehat{(c_1)_t}, \cdots, (c_1)_n ) \end{aligned} \,. \end{displaymath} Since pullback along the left vertical morphism sends $(c_1)_t$ to zero and is the identity on the other generators, this shows that \begin{displaymath} (B i_n)^\ast(c_{k \lt n}) \simeq \sigma_{k\lt n}((c_1)_1, \cdots, \widehat{(c_1)_t}, \cdots, (c_1)_n) \;\; mod (c_1)_t \,. \end{displaymath} This implies the claim for $k \lt n$. For the case $k = n$ the commutativity of the diagram and the fact that the right map is zero on $c_n$ by prop. \ref{GeneratorsOfCohomologyOfBunChernClasses} shows that the element $(B j_{\hat t})^\ast (B i_n)^\ast c_n = 0$ for all $1 \leq t \leq n$. But by lemma \ref{FromBUnTOBU1nPullbackInCohomologyIsInjective} the morphism $(B i_n)^\ast$, is injective, and hence $(B i_n)^\ast(c_n)$ is non-zero. Therefore for this to be annihilated by the morphisms that send $(c_1)_t$ to zero, for all $t$, the element must be proportional to all the $(c_1)_t$. By degree reasons this means that it has to be the product of all of them \begin{displaymath} \begin{aligned} (B i_n)^{\ast}(c_n) & = (c_1)_1 \otimes (c_1)_2 \otimes \cdots \otimes (c_1)_n \\ & = \sigma_n( (c_1)_1, \cdots, (c_1)_n ) \end{aligned} \,. \end{displaymath} This completes the induction step. \end{proof} \hypertarget{WhitneySumFormula}{}\subsubsection*{{Whitney sum formula}}\label{WhitneySumFormula} \begin{prop} \label{WhitneySumChernClasses}\hypertarget{WhitneySumChernClasses}{} For $k\leq n \in \mathbb{N}$, consider the canonical map \begin{displaymath} \mu_{k,n-k} \;\colon\; B U(k) \times B U(n-k) \longrightarrow B U(n) \end{displaymath} (which classifies the [[Whitney sum]] of [[complex vector bundles]] of [[rank]] $k$ with those of rank $n-k$). Under pullback along this map the universal [[Chern classes]] (prop. \ref{GeneratorsOfCohomologyOfBunChernClasses}) are given by \begin{displaymath} (\mu_{k,n-k})^\ast(c_t) \;=\; \underoverset{i = 0}{t}{\sum} c_i \otimes c_{t-i} \,, \end{displaymath} where we take $c_0 = 1$ and $c_j = 0 \in H^\bullet(B U(r))$ if $j \gt r$. So in particular \begin{displaymath} (\mu_{k,n-k})^\ast(c_n) \;=\; c_k \otimes c_{n-k} \,. \end{displaymath} \end{prop} e.g. (\hyperlink{Kochmann96}{Kochmann 96, corollary 2.3.4}) \begin{proof} Consider the [[commuting diagram]] \begin{displaymath} \itexarray{ H^\bullet( B U(n) ) &\overset{\mu_{k,n-k}^\ast}{\longrightarrow}& H^\bullet( B U(k) ) \otimes H^\bullet( B U(n-k) ) \\ {}^{\mathllap{\mu_k^\ast}}\downarrow && \downarrow^{\mathrlap{ \mu_{k}^\ast \otimes \mu_{n-k}^\ast }} \\ H^\bullet( B U(1)^n ) &\simeq& H^\bullet( B U(1)^k ) \otimes H^\bullet( B U(1)^{n-k} ) } \,. \end{displaymath} This says that for all $t$ then \begin{displaymath} \begin{aligned} (\mu_k^\ast \otimes \mu_{n-k}^\ast) \mu_{k,n-k}^\ast(c_t) & = \mu^\ast_n(c_t) \\ & = \sigma_t((c_1)_1, \cdots, (c_1)_n) \end{aligned} \,, \end{displaymath} where the last equation is by prop. \ref{SplittingPrincipleForChernClasses}. Now the [[elementary symmetric polynomial]] on the right decomposes as required by the left hand side of this equation as follows: \begin{displaymath} \sigma_t((c_1)_1, \cdots, (c_1)_n) \;=\; \underoverset{r = 0}{t}{\sum} \sigma_r((c_1)_1, \cdots, (c_1)_{n-k}) \cdot \sigma_{t-r}( (c_1)_{n-k+1}, \cdots, (c_1)_n ) \,, \end{displaymath} where we agree with $\sigma_q((c_1)_1, \cdots, (c_1)_p) = 0$ if $q \gt p$. It follows that \begin{displaymath} (\mu_k^\ast \otimes \mu_{n-k}^\ast) \mu_{k,n-k}^\ast(c_t) = (\mu_k^\ast \otimes \mu_{n-k}^\ast) \left( \underoverset{r=0}{t}{\sum} c_r \otimes c_{t-r} \right) \,. \end{displaymath} Since $(\mu_k^\ast \otimes \mu_{n-k}^\ast)$ is a monomorphism by lemma \ref{FromBUnTOBU1nPullbackInCohomologyIsInjective}, this implies the claim. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ChernClassesOfLinearRepresentations}{}\subsubsection*{{Chern classes of linear representations}}\label{ChernClassesOfLinearRepresentations} Under the [[Atiyah-Segal completion]] map [[linear representations]] of a [[group]] $G$ induce K-theory classes on the [[classifying space]] $B G$. Their Chern classes are hence invariants of the [[linear representations]] themselves. See at \emph{[[characteristic class of a linear representation]]} for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Chern root]] \item [[Pontryagin class]] \item [[Stiefel-Whitney class]] \item [[Chern character]] \end{itemize} In [[Yang-Mills theory]] field configurations with non-vanishing [[second Chern class]] (and minimal energy) are called [[instantons]]. The second Chern class is the \emph{[[instanton number]]} . For more on this see at \emph{\href{BPTS-instanton#FromTheMathsToThePhysicsStory}{SU(2)-instantons from the correct maths to the traditional physics story}}. \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[A. Grothendieck]], \emph{La th\'e{}orie des classes de Chern}, Bulletin de la Soci\'e{}t\'e{} Math\'e{}matique de France \textbf{86} (1958), p. 137--154, \href{http://www.numdam.org/item?id=BSMF_1958__86__137_0}{numdam} \end{itemize} Textbook accounts include \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], chapter IX of volume II of \emph{[[Connections, Curvature, and Cohomology]]} Academic Press (1973) \item [[John Milnor]], [[Jim Stasheff|James D. Stasheff]], \emph{Characteristic Classes}, Annals of Mathematics Studies 76, Princeton University Press (1974). \item [[Stanley Kochmann]], section 2.3 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Tammo tom Dieck]], \emph{Algebraic topology}, EMS 2008 \end{itemize} With an eye towards [[mathematical physics]]: \begin{itemize}% \item Gerd Rudolph, Matthias Schmidt, Def. 4.2.2 of \emph{Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields}, Theoretical and Mathematical Physics series, Springer 2017 (\href{https://link.springer.com/book/10.1007/978-94-024-0959-8}{doi:10.1007/978-94-024-0959-8}) \end{itemize} A brief introduction is in chapter 23, section 7 \begin{itemize}% \item [[Peter May]], \emph{A concise course in algebraic topology} (\href{http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf}{pdf}) \end{itemize} For [[Conner-Floyd Chern classes]] in [[complex oriented cohomology theory]]: \begin{itemize}% \item [[Frank Adams]], part II.2 and part III.10 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, 2010, lecture 4 (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture4.pdf}{pdf}) and lecture 5 (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture5.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Dupont, \emph{Curvature and characteristic classes}, Springer 1978 \end{itemize} [[!redirects Chern classes]] [[!redirects universal Chern class]] [[!redirects universal Chern classes]] [[!redirects second Chern class]] [[!redirects Chern root]] [[!redirects Chern roots]] [[!redirects total Chern class]] [[!redirects total Chern classes]] \end{document}