\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chern-Simons element} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{uniqueness}{Uniqueness}\dotfill \pageref*{uniqueness} \linebreak \noindent\hyperlink{CanonicalChernSimonsElement}{Canonical $\infty$-Chern-Simons elements}\dotfill \pageref*{CanonicalChernSimonsElement} \linebreak \noindent\hyperlink{OriginAndRelatedConcepts}{Origin and relation to other concepts}\dotfill \pageref*{OriginAndRelatedConcepts} \linebreak \noindent\hyperlink{PresentationForChernWeil}{As presentations for the $\infty$-Chern-Weil homomorphism}\dotfill \pageref*{PresentationForChernWeil} \linebreak \noindent\hyperlink{ChernSimonsForms}{Chern-Simons forms}\dotfill \pageref*{ChernSimonsForms} \linebreak \noindent\hyperlink{chernsimons_action_functionals}{Chern-Simons action functionals}\dotfill \pageref*{chernsimons_action_functionals} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{StandardCS}{On semisimple Lie algebra-- Standard Chern-Simons action functional}\dotfill \pageref*{StandardCS} \linebreak \noindent\hyperlink{higher_csforms_on_semisimple_lie_algebras}{Higher CS-forms on semisimple Lie algebras}\dotfill \pageref*{higher_csforms_on_semisimple_lie_algebras} \linebreak \noindent\hyperlink{action_functional_for_chernsimons_supergravity}{Action functional for Chern-Simons (super-)gravity}\dotfill \pageref*{action_functional_for_chernsimons_supergravity} \linebreak \noindent\hyperlink{fractional_secondary_pontryagin_classes}{Fractional secondary Pontryagin classes}\dotfill \pageref*{fractional_secondary_pontryagin_classes} \linebreak \noindent\hyperlink{BF}{On strict Lie 2-algebras -- BF-theory action functional}\dotfill \pageref*{BF} \linebreak \noindent\hyperlink{Symplectic}{On symplectic $\infty$-Lie algebroids -- The AKSZ Lagrangian}\dotfill \pageref*{Symplectic} \linebreak \noindent\hyperlink{higher_phase_space_hamiltonian_and_lagrangian_mechanics}{Higher phase space ---Hamiltonian and Lagrangian mechanics}\dotfill \pageref*{higher_phase_space_hamiltonian_and_lagrangian_mechanics} \linebreak \noindent\hyperlink{on_a_symplectic_manifold__the_topological_particle}{On a symplectic manifold -- The topological particle}\dotfill \pageref*{on_a_symplectic_manifold__the_topological_particle} \linebreak \noindent\hyperlink{on_a_poisson_lie_algebroid__the_poisson_model}{On a Poisson Lie algebroid -- The Poisson $\sigma$-model}\dotfill \pageref*{on_a_poisson_lie_algebroid__the_poisson_model} \linebreak \noindent\hyperlink{on_higher_extensions_of_the_super_poincare_lie_algebra__supergravity}{On higher extensions of the super Poincare Lie algebra -- supergravity}\dotfill \pageref*{on_higher_extensions_of_the_super_poincare_lie_algebra__supergravity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Chern-Simons element} on an [[L-∞ algebroid]] (named after [[Shiing-shen Chern]] and [[James Simons]] who considered this for [[semisimple Lie algebras]]) is an element of its [[Weil algebra]] that exhibits a [[transgression]] between an [[∞-Lie algebroid cocycle]] and an [[invariant polynomial]]. It is construct that arises in the presentation of the [[∞-Chern-Weil homomorphism]] by an [[∞-anafunctor]] of [[simplicial presheaves]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We discuss [[∞-Lie algebra]]s and [[∞-Lie algebroid]]s $\mathfrak{a}$ of [[finite type]] in terms of their [[Chevalley-Eilenberg algebra]]s $CE(\mathfrak{a})$. For $\infty$-Lie algebras these are objects in the [[category]] [[dgAlg]] of [[dg-algebra]]s (over a given ground [[field]]). For $\infty$-Lie algebroids these are dg-algebras equipped with a lift of the degree-0 algebra to an algebra over a given [[Fermat theory]] $T$ and such that the [[differential]] is a $T$-[[derivation]] in this degree. (See [[∞-Lie algebroid]] for details). We shall write in the following $dgAlg$ also for the category of dg-algebras with this extra structure and leave the [[Fermat theory]] $T$ implicit. \begin{defn} \label{}\hypertarget{}{} For $\mathfrak{g}$ an [[∞-Lie algebra]] or more generally [[∞-Lie algebroid]], $\mu \in CE(\mathfrak{g})$ a [[∞-Lie algebra cocycle]] (a closed element of the [[Chevalley-Eilenberg algebra]]) and $\langle - \rangle \in W(\mathfrak{g})$ an [[invariant polynomial]], a \textbf{Chern-Simons element} exhibiting the \emph{[[transgression]]} between the two is an element \begin{displaymath} cs \in W(\mathfrak{g}) \end{displaymath} such that \begin{enumerate}% \item we have $d_{W(\mathfrak{g})} cs = \langle -\rangle$ \item and $cs|_{CE(\mathfrak{g})} = \mu$ \end{enumerate} where the restriction is along the canonical morphism $W(\mathfrak{g}) \to CE(\mathfrak{g})$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Notice that a degree-$n$ [[∞-Lie algebroid cocycle]] $\mu$ is equivalently a morphism \begin{displaymath} CE(\mathfrak{g}) \leftarrow CE(b^{n-1}\mathbb{R}) : \mu \end{displaymath} and an [[invariant polynomial]] of degree $n+1$ is equivalently a morphism \begin{displaymath} inv(\mathfrak{g}) \leftarrow inv(b^{n-1}\mathbb{R}) = CE(b^n \mathbb{R}) : \langle - \rangle \end{displaymath} in [[dgAlg]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} A \textbf{Chern-Simons element} $cs$ an $\mathfrak{a}$ witnessing the [[transgression]] of $\langle - \rangle$ to $\mu$ is equivalently a morphism \begin{displaymath} W(\mathfrak{g}) \leftarrow W(b^{n-1} \mathbb{R}) : cs \end{displaymath} such that we have a [[commuting diagram]] in [[dgAlg]] \begin{equation} \itexarray{ CE(\mathfrak{g}) &\stackrel{\mu}{\leftarrow}& CE(b^{n-1} \mathbb{R}) &&& cocycle \\ \uparrow && \uparrow^{\mathrlap{i^*}} \\ W(\mathfrak{g}) &\stackrel{cs}{\leftarrow}& W(b^{n-1} \mathbb{R}) &&& Chern-Simons\;element \\ \uparrow && \uparrow \\ inv(\mathfrak{g}) &\stackrel{\langle -\rangle}{\leftarrow}& inv(b^{n-1} \mathbb{R}) &&& invariant\;polynomial } \,, \label{TheDiagram}\end{equation} where the vertical morphisms are the canonical ones. \end{prop} \begin{remark} \label{}\hypertarget{}{} If we think of \begin{itemize}% \item $W(\mathfrak{g})$ as differential forms on the total space of the universal $G$-bundles; \item $CE(\mathfrak{g})$ as differential forms on the fiber \item $inv(\mathfrak{g})$ as differential forms on the base space \end{itemize} then the abov expresses the classical notion of transgression of forms from the fiber to the base of a fibe bundle (for instance \hyperlink{Borel}{Borel, section 9}). \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{uniqueness}{}\subsubsection*{{Uniqueness}}\label{uniqueness} \begin{pop} \label{}\hypertarget{}{} For a given transgressive cocycle $\mu$ and transgressing invariant polynomial $\langle - \rangle$ the set of Chern-Simons elements witnessing the [[transgression]] is a [[torsor]] (based over the point and) over the additive [[group]] \begin{displaymath} \{\omega \in W(\mathfrak{g}) | d_{W(\mathfrak{g})} \omega = 0, i^* \omega = 0\} \end{displaymath} of Chern-Simons elements for vanishing cocycle and vanishing invariant polynomial. \end{pop} \hypertarget{CanonicalChernSimonsElement}{}\subsubsection*{{Canonical $\infty$-Chern-Simons elements}}\label{CanonicalChernSimonsElement} Since the [[Weil algebra]] of an [[L-∞ algebra]] has trivial cohomolgy in positive degree, every [[invariant polynomial]] $\langle -,\cdots, -\rangle$ has a Chern-Simons element and there is a standard formula for it. \begin{pop} \label{}\hypertarget{}{} Let $\mathfrak{g}$ be an [[L-∞ algebra]] with $k$-ary brackets $[-,\cdots, -]_k : \mathfrak{g}^{\otimes k} \to \mathfrak{g}$ and equipped with a quadratic [[invariant polynomial]] $\langle -,-\rangle$. A Chern-Simons element for $\langle-,-\rangle$ is given by the formula \begin{displaymath} cs(A) = \langle A, d_{dR} A\rangle + \sum_{k = 1}^\infty \frac{2}{(k+1)!} \langle A, [A,\cdots,A]_k\rangle \,, \end{displaymath} where $A : W(\mathfrak{g}) \to \Omega^\bullet(\Sigma)$ is any $\mathfrak{g}$-[[infinity-Lie algebroid-valued differential form|valued form]] \end{pop} \begin{proof} There is a canonical contracting [[homotopy]] \begin{displaymath} \tau : W(\mathfrak{g}) \to W(\mathfrak{g}) \end{displaymath} satisfying $[d_W, \tau] = Id$ and the above element is \begin{displaymath} cs = \tau \langle -,-\rangle \,. \end{displaymath} To see this, let $\{t_a\}$ be a [[basis]] and $\{t^a\}$ the dual basis. Then the differential of the [[Chevalley-Eilenberg algebra]] can be written \begin{displaymath} d_{CE(\mathfrak{g})} t^a = - \sum_{k = 1}^\infty \frac{1}{k!} [t_{a_1}, t_{a_2}, \cdots, t_{a_k}]^a \,\, t^{a_1} \wedge t^{a_2}\wedge \cdots t^{a_k} \,, \end{displaymath} where \begin{displaymath} [-,-, \cdots, -] : \mathfrak{g}^{\otimes_k} \to \mathfrak{g} \end{displaymath} is the corresponding $k$-ary bracket. Write \begin{displaymath} P_{a b} := \langle t_a , t_b\rangle \,, \end{displaymath} for the components of the [[invariant polynomial]] in this basis. Then the claim is that \begin{displaymath} cs = 2 P_{a b} t^a \wedge d_{W(\mathfrak{g})} t^b + \sum_{k = 1}^\infty C_{a b_1, \cdots, b_k} \,\, t^a \wedge t^{b_1} \wedge \cdots \wedge t^{b_k} \,, \end{displaymath} where the coefficients are \begin{displaymath} C_{a b_1, \cdots, b_k} := \frac{1}{(k+1)!} (P_{a b} [t_{b_1}, \cdots, t_{b_k}]^b) \end{displaymath} Write $F(\mathfrak{g})$ for the [[free construction|free]] [[dg-algebra]] on the [[graded vector space]] $\mathfrak{g}^*$. In terms of the above basis this is generated from $\{t^a, \mathbf{d}t^a\}$. As discussed at [[Weil algebra]], there is a dg-algebra [[isomorphism]] \begin{displaymath} F(\mathfrak{g}) \stackrel{\simeq}{\to} W(\mathfrak{g}) \end{displaymath} given by sending $t^a \mapsto t^a$ and $\mathbf{d}t^a \mapsto d_{CE} t^a + r^a$. Let $h : F(\mathfrak{g}) \to F(\mathfrak{g})$ be the [[derivation]] which on generators is defined by \begin{displaymath} h : t^a \mapsto 0 \end{displaymath} \begin{displaymath} h : \mathbf{d}t^a \mapsto t^a \,. \end{displaymath} Notice that this is \emph{not} the homotopy that exhibits the triviality of $Id_{F(\mathfrak{g}^*)}$, rather that homotopy is $\frac{1}{L} h$, where $L$ is the word length operator for element in $F(\mathfrak{g}^*)$ in terms of the generators $\{t^a , \mathbf{d}t^a\}$. Therefore the homotopy $\tau$ is the composite top morphism in the diagram \begin{displaymath} \itexarray{ W(\mathfrak{g}) &\stackrel{\tau}{\to}& W(\mathfrak{g}) \\ \downarrow^{\mathrlap{\simeq}} && \uparrow^{\mathrlap{\simeq}} \\ F(\mathfrak{g}) &\stackrel{\frac{1}{L} h}{\to}& F(\mathfrak{g}) } \,. \end{displaymath} Unwinding this, we find \begin{displaymath} \begin{aligned} cs & := \tau \left( P_{a b} r^{a} \wedge r^b \right) \\ & = P_{a b} \tau \left( d_{W(\mathfrak{g})} t^a + \sum_{k = 1}^\infty [t_{a_1}, \cdots, t_{a_k}]^a t^{a_1} \wedge \dots t^{a_k} \right) \wedge \left( d_{W(\mathfrak{g})} t^b + \sum_{k = 1}^\infty [t_{b_1}, \cdots, t_{b_k}]^b t^{b_1} \wedge \dots t^{b_k} \right) \\ & = P_{a b} t^a \wedge d_{W(\mathfrak{g})} t^b + \sum_{k = 1}^\infty \frac{2}{k! (k+1) } P_{a b} [t_{b_1}, \cdots t_{b_k}]^b t^{b_1} \wedge \cdots \wedge t^{b_k} \end{aligned} \,. \end{displaymath} \end{proof} \begin{example} \label{}\hypertarget{}{} We consider the ordinary Chern-Simons element as an example of this formula: let $\mathfrak{g}$ be a [[semisimple Lie algebra]] and $\langle -,-\rangle$ the [[Killing form]] [[invariant polynomial]]. Then the above computation gives \begin{displaymath} \begin{aligned} cs & = \tau \left( P_{a b} r^a \wedge r^b \right) \\ & = P_{a b}\tau \left(d_W t^a + \frac{1}{2}C^a{}_{a_1 a_2}t^{a_1} \wedge t^{a_2} \right) \wedge \left(d_W t^b + \frac{1}{2}C^b{}_{b_1 b_2}t^{b_1} \wedge t^{b_2} \right) \\ & = P_{a b} t^a \wedge d_W t^b + \frac{2}{2! 3} P_{a b} t^a \wedge C^b_{b_1 b_2} t^{b_1} \wedge t^{b_2} \\ & = P_{a b} t^a \wedge d_W t^b + \frac{1}{3} C_{a b c} t^a \wedge t^{b} \wedge t^{c} \end{aligned} \,. \end{displaymath} \end{example} \hypertarget{OriginAndRelatedConcepts}{}\subsection*{{Origin and relation to other concepts}}\label{OriginAndRelatedConcepts} We discuss the general abstract structures of which Chern-Simons elements are presentations and how they are related to other structures. The term \emph{Chern-Simons element} alludes to the term \emph{[[Chern-Simons form]]} and [[Chern-Simons theory]]. In the following we explain the relation. \hypertarget{PresentationForChernWeil}{}\subsubsection*{{As presentations for the $\infty$-Chern-Weil homomorphism}}\label{PresentationForChernWeil} We explain here briefly how Chern-Simons elements provide a \emph{presentation} of a generalization of the [[Chern-Weil homomorphism]] -- the [[∞-Chern-Weil homomorphism]] in [[cohesive (∞,1)-topos]] theory -- in the sense in which [[(∞,1)-topos]]es have [[presentable (∞,1)-category|presentations]] by a [[model structure on simplicial presheaves]]. To warm up, we start with considering a traditional setup of [[Lie groupoid]] theory. Recall that for $G$ a [[Lie group]], we may form its [[delooping]] [[Lie groupoid]] dnoted $*//G$ or $\mathbf{B}G$. Then with $X$ any [[smooth manifold]], we have that the [[groupoid]] of [[morphism]]s of [[Lie groupoid]]s $X \to \mathbf{B}G$ is equivalent to that of $G$-[[principal bundle]]s on $X$: \begin{displaymath} SmoothGrpd(X, \mathbf{B}G) \simeq G Bund(X) \,. \end{displaymath} Here we are thinking of [[Lie groupoid]]s as [[differentiable stack]]s, hence as [[object]]s in the [[(2,1)-topos]] \begin{displaymath} SmoothGrpd := Sh_{(2,1)}(SmoothMfd) \end{displaymath} of [[stack]]s/[[(2,1)-sheaves]] on the [[site]] [[SmoothMfd]] (equivalently on its [[small category|small]] [[dense subsite]] [[CartSp]] of [[Cartesian space]]s). (This is discussed in detail at \emph{[[principal bundle]]} ). There is a \emph{differential refinement} of the [[Lie groupoid]] $\mathbf{B}G$, to the smooth groupoid \begin{displaymath} \mathbf{B}G_{conn} := SmoothGrpd(\mathbf{P}_1(-), \mathbf{B}G) \,, \end{displaymath} where $\mathbf{P}_1(X)$ is the [[path groupoid]] of $X$. This is the [[(2,1)-sheaf]] given by the [[(∞,1)-sheafification|(2,1)-sheafification]] of the assignment that sends a [[smooth manifold]] $U$ to the [[groupoid of Lie algebra-valued 1-forms]] on $U$. There is a corresponding [[natural equivalence]] \begin{displaymath} SmoothGrpd(X, \mathbf{B}G_{conn}) \simeq G Bund_{conn}(X) \end{displaymath} of morphisms into $\mathbf{B}G_{conn}$ with the groupoid of $G$-[[principal bundle]]s with [[connection on a bundle|with connection]] on $X$. (This is described in detail at \emph{[[connection on a bundle]]} ). In particular if $G = U(1)$ is the [[circle group]], a morphism $X\to \mathbf{B}U(1)_{conn}$ is a [[circle n-bundle with connection|circle bundle with connection]]. This This allows already to consider a simple case of a [[characteristic class]] and its refinement to a [[differential characteristic class]]: Let $U$ be the [[unitary group]]. There is a canonical morphism of [[Lie groupoid]]s $\mathbf{c}_1 : \mathbf{B}U \to \mathbf{B}U(1)$ given by the [[determinant]]. This -- or rather its image in [[cohomology]] \begin{displaymath} \mathbf{c}_1 : SmoothGrpd(- ,\mathbf{B}U) \to SmoothGrpd(-, \mathbf{B} U(1)) \end{displaymath} is a smooth representative of the [[characteristic class]] called the \emph{first [[Chern class]]} . Its differential refinement is the evident morphism \begin{displaymath} \hat \mathbf{c}_1 : \mathbf{B}U_{conn} \to \mathbf{B}U(1)_{conn} \end{displaymath} that sends a $\mathfrak{u}$-[[Lie algebra valued 1-form|valued differential form]] to the [[trace]] of its Lie algebra value. Postcomposition with this is the refined [[Chern-Weil homomorphism]] \begin{displaymath} \itexarray{ SmoothGrpd(X, \mathbf{B}U)_{conn} &\stackrel{\hat \mathbf{c}_1}{\to}& SmoothGrpd(X, \mathbf{B}U(1)_{conn}) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ U Bund_\nabla(X) &\to& U(1) Bund_\nabla(X) } \end{displaymath} with values in circle bundles with connection, hence in degree-2 [[ordinary differential cohomology]]. It is this kind of construction on [[Lie groupoid]]s that we now want to generalize to a notion of [[smooth ∞-groupoid]]s, to see that Chern-Simons elements are a means to constructi morphisms akind to the differential first Chern-class $\hat \mathbf{c}_1$. A general abstract context for [[higher geometry]] equipped with [[differential cohomology]] is a [[cohesive (∞,1)-topos]] $\mathbf{H}$ of [[∞-groupoid]]s equipped with \emph{cohesive structure} , such as [[Smooth∞Grpd|smooth cohesive structure]]. An example for such is the [[∞-stack]]-analog of the [[stack]]-[[(2,1)-topos]] over [[SmoothMfd]]: the [[(∞,1)-sheaf (∞,1)-topos|∞-stack (∞,1)-topos]] [[Smooth∞Grpd]] $:= \hat Sh_{(\infty,1)}(SmoothMfd)$. In that context we have for instance all the higher [[delooping]]s of $U(1)$: the \begin{displaymath} \mathbf{B}^n U(1) \in Smooth\infty Grpd \,. \end{displaymath} This is such that the evident generalizations of the above classification statements hold: we have that morphisms $X \to \mathbf{B}^n U(1)$ form an [[n-groupoid]] \begin{displaymath} Smooth\infty Grpd(X, \mathbf{B}^n U(1)) \simeq U(1) (n-1)Bund(X) \end{displaymath} equivalent to that of [[circle n-bundle with connection|circle n-bundles]]/$(n-1)$-[[bundle gerbe]]s on $X$. If here $X = \mathbf{B}G$ is again the [[delooping]] of a [[Lie group]], this means that now also the higher [[characteristic class]]es are represented by morphisms \begin{displaymath} \mathbf{B}G \to \mathbf{B}^n U(1) \,. \end{displaymath} For instance for $G = Spin$ the [[spin group]], the first fractional [[Pontryagin class]] has a smooth incarnation given by a morphism of the form \begin{displaymath} \frac{1}{2}\mathbf{p}_1 : \mathbf{B} Spin \to \mathbf{B}^3 U(1) \end{displaymath} corresponding under the above equivalence to the ordinary [[Chern-Simons circle 3-bundle]] on $\mathbf{B}G$. Every [[cohesive (∞,1)-topos]] comes canonically and essentially uniquely equipped with that we need for the discussion of a refinement of this to [[differential characteristic class]]es: There is an [[adjoint (∞,1)-functor|endo-(∞,1)-adjunction]] \begin{displaymath} (\mathbf{\Pi} \dashv \mathbf{\flat}) : Smooth\infty Grpd \to Smooth \infty Grpd \end{displaymath} where \begin{itemize}% \item $\mathbf{\Pi}(X)$ is the of a [[smooth ∞-groupoid]] $X$; \item $\mathbf{\flat}\mathbf{B}G$ is the coefficient object for on $G$-[[principal ∞-bundle]]s. \end{itemize} A [[morphism]] $\mathbf{\Pi}(X) \to \mathbf{B}^n U(1)$ encodes the flat [[higher parallel transport]] of a flat [[circle n-bundle with connection]], and we have that the [[n-groupoid]] of morphisms \begin{displaymath} Smooth \infty Grpd(\mathbf{\Pi}(X), \mathbf{B}^n U(1)) \simeq U(1) n Bund_{\nabla_{flat}}(X) \end{displaymath} is that of flat [[circle n-bundles with connection]]/ (n-1)-[[connection on a bundle gerbe|bundle gerbes with connection]]. We observe that a \emph{trivial} circle $n$-bundle with connection is equivalently just a globally defined [[differential form|differential n-form]]. Therefore if we define the modified [[adjoint (∞,1)-functor|(∞,1)-adjunction]] \begin{displaymath} (\mathbf{\Pi}_{dR} \dashv \mathbf{\flat}_{dR}) : */Smooth\infty Grpd \stackrel{\leftarrow}{\to} Smooth\infty Grpd \end{displaymath} by forming the [[(∞,1)-pullback]] \begin{displaymath} \mathbf{\flat}_{dR}\mathbf{B}^n U(1) := * \prod_{\mathbf{B}^n U(1)} \mathbf{\flat} \mathbf{B}^n U(1) \,, \end{displaymath} which is the coefficient object for \emph{trivial} principal $\infty$-bundles equipped with flat $\infty$-connection, one finds (discussed in detail ) that morphisms $X \to \mathbf{\flat}_{dR} \mathbf{B}^n U(1)$ correspond to trivial circle bundle with connection, hence to cocycles in [[de Rham cohomology]] of $X$; \begin{displaymath} \pi_0 Smooth \infty Grpd(X, \mathbf{\flat}_{dR} \mathbf{B}^n U(1)) = \left\{ \itexarray{ H_{dR}^n(X) & n \geq 2 \\ \Omega^1_{cl}(X) & n = 1 } \right. \,. \end{displaymath} This now allows us to construct differential refinements: one can show (detailed discussion is ) that there are canonical cocycles \begin{displaymath} curv : \mathbf{B}^n U(1) \to \mathbf{\flat}_{dR} \mathbf{B}^{n+1} \end{displaymath} in the degree $(n+1)$-[[de Rham cohomology]] of $\mathbf{B}^n U(1)$: these are the universal [[curvature characteristic form]]s on $\mathbf{B}^n U(1)$. Then for $\mathbf{c} : \mathbf{B}G \to \mathbf{B}^n U(1)$ any smooth [[characteristic class]], the corresponding (unrefined) [[differential characteristic class]] is simply the composite \begin{displaymath} \mathbf{c}_{dR} : \mathbf{B}G \stackrel{\mathbf{c}}{\to} \mathbf{B}^n U(1) \stackrel{curv}{\to} \mathbf{\flat}_{dR} \mathbf{B}^{n+1} U(1) \,. \end{displaymath} The (unrefined) [[∞-Chern-Weil homomorphism]] is postcomposition with this morphism: \begin{displaymath} (\mathbf{c}_{dR})_* : H^1(X,G) \to H_{dR}^{n+1}(X) \,. \end{displaymath} This is finally where the Chern-Simons elements come in: Chern-Simons elements are a means to \emph{present} the composite morphism $\mathbf{c}_{dR}$ of [[smooth ∞-groupoid]]s by an [[∞-anafunctor]] between smooth [[Kan complex]]es. This presentation we describe in the next section. (In fact a bit more is true: the serve to present the refinement of $\mathbf{c}_{dR}$ to a morphism $\hat \mathbf{c}$ with values in [[ordinary differential cohomology]]. This we come to further below.) \hypertarget{ChernSimonsForms}{}\subsubsection*{{Chern-Simons forms}}\label{ChernSimonsForms} We explain now how Chern-Simons elements arise as a presentation of a [[differential characteristic class]] $\mathbf{c}_{dR}$ by a [[span]] of [[simplicial presheaves]]. At the heart of the presentation of differenial characteristic classes by morphisms of simplicial presheaves is a differential refinement of the [[Lie integration]] of [[L-∞ algebra]]s and [[∞-Lie algebroid]]: for $\mathfrak{g}$ an ordinary [[Lie algebra]], one finds that the 3-[[coskeleton]] of the simplicial presheaf that assigns flat [[vertical differential form|vertical]] $\mathfrak{g}$-[[Lie algebra valued 1-form]]s \begin{displaymath} \exp(\mathfrak{g}) : (U,[k]) \mapsto \left\{ \itexarray{ \Omega^\bullet_{si, vert}(U \times \Delta^k) &\stackrel{A_{vert}}{\leftarrow}& CE(\mathfrak{g}) } \right\} \end{displaymath} is the [[delooping]] of the [[simply connected]] [[Lie group]] $G$ integrating $\mathfrak{g}$ \begin{displaymath} \mathbf{cosk}_3 \exp(\mathfrak{g}) \stackrel{\simeq}{\to} \mathbf{B}G \,. \end{displaymath} Similarly the [[Lie integration]] of the [[line Lie n-algebra]] $b^{n-1}\mathbb{R}$ \begin{displaymath} \exp(b^{n-1}\mathbb{R}) : (U,[k]) \mapsto \left\{ \itexarray{ \Omega^\bullet_{si,vert}(U \times \Delta^k) &\leftarrow& CE(b^{n-1}\mathbb{R}) } \right\} \end{displaymath} is the $n$-fold [[delooping]] of $\mathbb{R}$: \begin{displaymath} \exp(b^{n-1}\mathbb{R}) \stackrel{\simeq}{\to} \mathbf{B}^n \mathbb{R} \,. \end{displaymath} Moreover, for $\mu : \mathfrak{g} \to b^{n-1}\mathbb{R}$ a degree-$n$ [[cocycle]] in [[Lie algebra cohomology]], simple postcomoposition gives its image under [[Lie integration]] \begin{displaymath} \exp(\mu) : \exp(\mathfrak{g}) \to \exp(b^{n-1}\mathbb{R}) \,. \end{displaymath} Under [[coskeleton|coskeletization]] on the left this carves out the [[period]]s of $\mu$ as a lattice in $\mathbb{R}$, which typically is the [[integer]]s, so that this descends to degree $n$-cocycle in [[Lie group cohomology]] with coefficients in $U(1) \simeq \mathbb{R}/\mathbb{Z}$ \begin{displaymath} \exp(\mu) : \mathbf{B}G \to \mathbf{B}^n \mathbb{R}/\mathbb{Z} \,. \end{displaymath} (See [[Lie group cohomology]] and [[smooth ∞-groupoid]] for discussion of the refined notion of Lie group cohomology arising here.) The differential refinement of these construction is based on the following fact (discussed in detail ) \begin{enumerate}% \item the object $\mathbf{B}^n U(1) \in$ [[Smooth∞Grpd]] is equivalently presented by a quotient of the presheaf of [[Kan complex]]es given by \begin{displaymath} \mathbf{B}^n U(1)_{diff} : (U \in SmoothMfd, [k] \in \Delta) \mapsto \left\{ \itexarray{ \Omega^\bullet_{si,vert}(U \times \Delta^k) &\leftarrow& CE(b^{n-1} \mathbb{R}) \\ \uparrow && \uparrow \\ \Omega^\bullet_{si}(U \times \Delta^k) &\stackrel{\omega}{\leftarrow}& W(b^{n-1} \mathbb{R}) } \right\} \,, \end{displaymath} where on the right we have the set of horizontal morphisms in [[dgAlg]] that make a [[commuting diagram]] with the canonical vertical morphisms as indicated. \begin{displaymath} \itexarray{ \mathbf{B}^n U(1)_{diff} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}^n U(1) } \,. \end{displaymath} (We may think of a morphism of simplicial presheaves $X \to \mathbf{B}^n U(1)_{diff}$ as a [[circle n-bundle with connection|circle n-bundle]]/$(n-1)$-bundle gerbe equipped with a \emph{[[pseudo-connection]]} . ) Notice that the bottom morphism here encodes precisely a degree-$n$ [[differential form]] $\omega$ on $U \times \Delta^k$, \item The morphism $curv : \mathbf{B}^n U(1) \to \mathbf{\flat}_{dR} \mathbf{B}^{n+1} U(1)$ is presented on this by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \mathbf{B}^n U(1)_{diff} &\to& \mathbf{\flat}_{dR} \mathbf{B}^{n+1}U(1)_{sim} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}^n U(1) } \end{displaymath} by the map that sends such a form $\omega$ to its [[curvature]] $d \omega$. If the [[pseudo-connection]]s that we are dealing with are genuine connections the [[curvature]] is a basic form down on $U$ and this means diagrammatically that it forms the [[pasting]] composite \begin{displaymath} \itexarray{ \Omega^\bullet_{si,vert}(U \times \Delta^k) &\leftarrow& CE(b^{n-1} \mathbb{R}) \\ \uparrow && \uparrow \\ \Omega^\bullet_{si}(U \times \Delta^k) &\stackrel{\omega}{\leftarrow}& W(b^{n-1} \mathbb{R}) \\ \uparrow && \uparrow \\ \Omega^\bullet(U) &\stackrel{d \omega}{\leftarrow}& inv(b^{n-1} \mathbb{R}) } \end{displaymath} and then picks out the bottom horizontal morphism. \end{enumerate} Therefore our task of presenting $\mathbf{c}_{dR}$ amounts to computing the composition of [[∞-anafunctor]]s \begin{displaymath} \itexarray{ && \mathbf{B}^n U(1)_{diff} &\to& \mathbf{\flat}_{dR} \mathbf{B}^{n+1}U(1)_{sim} \\ && \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}G &\stackrel{\exp(\mu)}{\to}& \mathbf{B}^n U(1) } \end{displaymath} To do se we need to complete componentwise to [[commuting diagram]]s. To this end we first complete the assignment of $\exp(\mathfrak{g})$ to a diagram \begin{equation} (U,[k]) \mapsto \left\{ \itexarray{ \Omega^\bullet(U \times \Delta^k)_{vert} &\stackrel{A_{vert}}{\leftarrow}& CE(\mathfrak{g}) &&& transition\;function \\ \uparrow && \uparrow \\ \Omega^\bullet(U \times \Delta^k) &\stackrel{A}{\leftarrow}& W(\mathfrak{g}) &&& connection \\ \uparrow && \uparrow \\ \Omega^\bullet(U) &\stackrel{\langle F_A \rangle}{\leftarrow}& inv(\mathfrak{g}) &&& curvature\;characteristic\;form } \right\} \,. \label{ConnectionDiagram}\end{equation} Here in the middle row an unrestricted $\mathfrak{g}$-[[∞-Lie algebra valued differential form]] appears, which is the local $\mathfrak{g}$-[[connection on an ∞-bundle|∞-connection]]. And in the lower row all its [[curvature characteristic forms]] appear, obtained by evaluating the [[curvature]] $F_A$ in the [[invariant polynomial]]s on $\mathfrak{g}$. This is such that a choice of Chern-Simons element witnessing the [[transgression]] of an [[invariant polynomial]] to $\mu$ allows to refine $\exp(\mu)$ to \begin{equation} \cdots \stackrel{\exp(\mu)_{conn}}{\mapsto} \left\{ \itexarray{ \Omega^\bullet(U \times \Delta^k)_{vert} &\stackrel{A_{vert}}{\leftarrow}& CE(\mathfrak{g}) &\stackrel{\mu}{\leftarrow}& CE(b^{n-1}\mathbb{R}) &&& characteristic\;class \\ \uparrow && \uparrow && \uparrow \\ \Omega^\bullet(U \times \Delta^k) &\stackrel{A}{\leftarrow}& W(\mathfrak{g}) &\stackrel{cs}{\leftarrow}& W(b^{n-1}\mathbb{R}) &&& Chern-Simons\;form \\ \uparrow && \uparrow && \uparrow \\ \Omega^\bullet(U) &\stackrel{\langle -\rangle}{\leftarrow}& inv(\mathfrak{g}) &\stackrel{\langle -\rangle}{\leftarrow}& inv(b^{n-1}\mathbb{R}) &&& curvature\;characteristic\;form } \right\} \,. \label{ChernWeilDiagram}\end{equation} Here now the middle row is the evaluationn of the connection form inside the Chern-Simons element. This is the corresponding [[Chern-Simons form]] \begin{displaymath} \Omega^\bullet(U) \stackrel{A}{\leftarrow} W(\mathfrak{g}) \stackrel{cs}{\leftarrow} W(b^{n-1}\mathbb{R}) : CS(A) \end{displaymath} of the $\mathfrak{g}$-connection evaluated in the given Chern-Simons element. Its [[curvature]] is the [[curvature characteristic form]] $\langle F_A \rangle$ appearing in the bottom line of the diagram, which is obtained by evaluating the $\mathfrak{g}$-valued [[curvature]] in the given [[invariant polynomial]]. A more comprehensive account of this is at [[Chern-Weil homomorphism in Smooth∞Grpd]]. \hypertarget{chernsimons_action_functionals}{}\subsubsection*{{Chern-Simons action functionals}}\label{chernsimons_action_functionals} By the above construction, every Chern-Simons element $cs \in W(\mathfrak{a})$ of degree $d$ on an [[∞-Lie algebroid]] $\mathfrak{a}$ induces an [[action functional]] on the space of [[∞-Lie algebroid valued forms]] on $\mathfrak{a}$ over a $d$-[[dimensional]] [[smooth manifold]] $\Sigma$ \begin{displaymath} S_{cs} : \Omega(\Sigma, \mathfrak{a}) \to \mathbb{R} \end{displaymath} given by \begin{displaymath} (A,B,C, \cdots) \mapsto \int_\Sigma CS(A,B,C, \cdots) \,. \end{displaymath} This generalizes the action functional of ordinary [[Chern-Simons theory]] to general Chern-Simons elements. In the \hyperlink{Examples}{examples} below is a list of various [[quantum field theories]] that arise as generalized Chern-Simons theories this way. For more details see [[schreiber:infinity-Chern-Simons theory]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{StandardCS}{}\subsubsection*{{On semisimple Lie algebra-- Standard Chern-Simons action functional}}\label{StandardCS} Let $\mathfrak{g}$ be a [[semisimple Lie algebra]]. For the following computations, choose a [[basis]] $\{t^a\}$ of $\mathfrak{g}^*$ and let $\{r^a\}$ denotes the corresponding degree-shifted basis of $\mathfrak{g}^*[1]$. Notice that in terms of this the differential of the CE-algebra is \begin{displaymath} d_{CE(\mathfrak{g})} : t^a \mapsto -\frac{1}{2}C^a{}_{b c}t^b \wedge t^c \end{displaymath} and that of the Weil algebra \begin{displaymath} d_{W(\mathfrak{g})} : t^a \mapsto -\frac{1}{2}C^a{}_{b c}t^b \wedge t^c + r^a \end{displaymath} and \begin{displaymath} d_{W(\mathfrak{g})} : r^a \mapsto -C^a{}_{b c} t^b \wedge r^c \,. \end{displaymath} Let $P_{a b} r^a \wedge r^b \in W(\mathfrak{g})$ be the [[Killing form]] invariant polynomial. This being invariant \begin{displaymath} d_{W(\mathfrak{g})} P_{a b} r^a \wedge r^b = 2 P_{a b} C^{a}{}_{d e} t^d \wedge r^e \wedge r^b = 0 \end{displaymath} is equivalent to the fact that the coefficients \begin{displaymath} C_{a b c} := P_{a a'}C^{a'}{}_{b c} \end{displaymath} are skew-symmetric in $a$ and $b$, and therefore skew in all three indices. \begin{uprop} A Chern-Simons element for the [[Killing form]] invariant polynomial $\langle -, - \rangle = P(-,-)$ is \begin{displaymath} \begin{aligned} cs &= P_{a b} t^a \wedge (d_{W(\mathfrak{g})} t^b) + \frac{1}{3} P_{a a'}C^{a'}{}_{b c} t^a \wedge t^b \wedge t^c \\ & = P_{a b} t^a \wedge r^b - \frac{1}{6} P_{a a'}C^{a'}{}_{b c} t^a \wedge t^b \wedge t^c \end{aligned} \,. \end{displaymath} In particular the Killing form $\langle -,-\rangle$ is in transgression with the degree 3-cocycle \begin{displaymath} \mu = -\frac{1}{6}\langle -,[-,-]\rangle \,. \end{displaymath} \end{uprop} \begin{proof} We compute \begin{displaymath} \begin{aligned} d_{W(\mathfrak{g})} \left( P_{a b} t^a \wedge r^b + \frac{1}{2}P_{a a'}C^{a'}{}_{b c} t^a \wedge t^b \wedge t^c \right) & = P_{a b} r^a \wedge r^b \\ & -\frac{1}{2} P_{a b} C^a{}_{d e} t^d \wedge t^e \wedge r^b \\ & + P_{a b} C^b{}_{d e} t^a \wedge t^d \wedge r^e \\ & - \frac{3}{6} P_{a a'}C^{a'}{}_{b c} t^a \wedge t^b \wedge r^c \\ & = P_{a b} r^a \wedge r^b \\ & + \frac{1}{2}C_{a b c} t^a \wedge t^b \wedge r^c \\ & - \frac{1}{2} C_{a b c} t^a \wedge t^b \wedge r^c \\ & = P_{a b } r^a \wedge r^b \end{aligned} \,. \end{displaymath} \end{proof} Under a [[Lie algebra-valued form]] \begin{displaymath} \Omega^\bullet(X) \stackrel{}{\leftarrow} W(\mathfrak{g}) : A \end{displaymath} this Chern-Simons element is sent to \begin{displaymath} cs(A) = P_{a b} A^a \wedge d A^b + \frac{1}{3} C_{a b c} A^a \wedge A^b \wedge A^c \,. \end{displaymath} If $\mathfrak{g}$ is a [[matrix Lie algebra]] then the Killing form is the [[trace]] and this is equivalently \begin{displaymath} cs(A) = tr(A \wedge d A) + \frac{2}{3} tr(A \wedge A \wedge A) \,. \end{displaymath} This is a familiar form of the standard [[Chern-Simons form]] in degree 3. For $\Sigma$ a 3-[[dimensional]] [[smooth manifold]] the corresponding [[action functional]] $S_{CS} : \Omega^1(\Sigma, \mathfrak{g}) \to \mathbb{R}$ \begin{displaymath} S_{CS} : A \mapsto \int_\Sigma cs(A) \end{displaymath} is the standard action functional of [[Chern-Simons theory]]. \hypertarget{higher_csforms_on_semisimple_lie_algebras}{}\subsubsection*{{Higher CS-forms on semisimple Lie algebras}}\label{higher_csforms_on_semisimple_lie_algebras} For $\mu \in CE(\mathfrak{g})$ any higher order cocycle, $CS_\mu(A)$ is the corresponding higher order Chern-Simons form. \hypertarget{action_functional_for_chernsimons_supergravity}{}\paragraph*{{Action functional for Chern-Simons (super-)gravity}}\label{action_functional_for_chernsimons_supergravity} Higher Chern-Simons elements on the [[Poincare Lie algebra]] $\mathfrak{g} = \mathfrak{iso}(d,1)$ or the [[super Poincare Lie algebra]] $\mathfrak{g} = \mathfrak{siso}(d,1)$ yield [[action functional]]s for [[gravity]] and [[supergravity]]. (\ldots{}) See (\hyperlink{Zanelli}{Zanelli}). \hypertarget{fractional_secondary_pontryagin_classes}{}\paragraph*{{Fractional secondary Pontryagin classes}}\label{fractional_secondary_pontryagin_classes} For instance for $\mu_7$ the 7-cocycle on a [[semisimple Lie algebra]], $CS_{\mu_7}(A)$ is the corresponding Chern-Simons 7-form, corresponding to the second [[Pontryagin class]]. Notice that this we may also think of as a 7-cocycle on the corresponding [[string Lie 2-algebra]]. As such it is the one that classifies the extension to the [[fivebrane Lie 6-algebra]]. The corresponding Chern-Simons 7-form appears as the local conneciton data in the [[Chern-Simons circle 7-bundle with connection]] that obstructions the lift from a [[differential string structure]] to a [[differential fivebrane structure]]. \hypertarget{BF}{}\subsubsection*{{On strict Lie 2-algebras -- BF-theory action functional}}\label{BF} \begin{uprop} Let $\mathfrak{g} = (\mathfrak{g}_2 \stackrel{\partial}{\to} \mathfrak{g})_1$ be a [[strict Lie 2-algebra]]. Then \begin{itemize}% \item every [[invariant polynomial]] $\langle -\rangle_{\mathfrak{g}_1} \in inv(\mathfrak{g}_1)$ on $\mathfrak{g}_1$ is a Chern-Simons element on $\mathfrak{g}$, restricting to the trivial [[∞-Lie algebra cocycle]]; \item for $\mathfrak{g}_1$ a [[semisimple Lie algebra]] and $\langle - \rangle_{\mathfrak{g}_1}$ the [[Killing form]], the corresponding Chern-Simons action functional on [[∞-Lie algebra valued forms]] \begin{displaymath} \Omega^\bullet(X) \stackrel{(A,B)}{\leftarrow} W(\mathfrak{g}_2 \to \mathfrak{g}_1) \stackrel{(\langle - \rangle_{\mathfrak{g}_1}, d_W \langle - \rangle_{\mathfrak{g}_1} )}{\leftarrow} W(b^{n-1} \mathbb{R}) \end{displaymath} \end{itemize} is the sum of the [[action functional]]s of [[topological Yang-Mills theory]] with [[BF-theory]] with [[cosmological constant]] (in the sense of [[gravity as a BF-theory]]): \begin{displaymath} CS_{\langle-\rangle_{\mathfrak{g}_1}}(A,B) = \langle F_A \wedge F_A\rangle_{\mathfrak{g}_1} - 2\langle F_A \wedge \partial B\rangle_{\mathfrak{g}_1} + 2\langle \partial B \wedge \partial B\rangle_{\mathfrak{g}_1} \,, \end{displaymath} where $F_A$ is the ordinary [[curvature]] 2-form of $A$. \end{uprop} This is from (\hyperlink{SSSI-BFtheory}{SSSI}). \begin{proof} For $\{t_a\}$ a [[basis]] of $\mathfrak{g}_1$ and $\{b_i\}$ a basis of $\mathfrak{g}_2$ we have \begin{displaymath} d_{W(\mathfrak{g})} : \sigma t^a \mapsto d_{W(\mathfrak{g}_1)} + \partial^a{}_i \sigma b^i \,. \end{displaymath} Therefore with $\langle -\rangle_{\mathfrak{g}_1} = P_{a_1 \cdots a_n} \sigma r^{a_1} \wedge \cdots \sigma t^{a_n}$ we have \begin{displaymath} d_{W(\mathfrak{g})} \langle - \rangle_{\mathfrak{g}_1} = n P_{a_1 \cdots a_n}\partial^{a_1}{}_i \sigma b^{i} \wedge \cdots \sigma t^{a_n} \,. \end{displaymath} The right hand is a polynomial in the shifted generators of $W(\mathfrak{g})$, and hence an [[invariant polynomial]] on $\mathfrak{g}$. Therefore $\langle - \rangle_{\mathfrak{g}_1}$ is a Chern-Simons element for it. Now for $(A,B)$ an [[∞-Lie algebra-valued form]], we have that the 2-form curvature is \begin{displaymath} F_{(A,B)}^1 = F_A - \partial B \,. \end{displaymath} Therefore \begin{displaymath} \begin{aligned} CS_{\langle -\rangle_{\mathfrak{g}_1}}(A,B) & = \langle F_{(A,B)}^1\rangle_{\mathfrak{g}_1} \\ & = \langle F_A \wedge F_A\rangle_{\mathfrak{g}_1} - 2\langle F_A \wedge \partial B\rangle_{\mathfrak{g}_1} + 2\langle \partial B \wedge \partial B\rangle_{\mathfrak{g}_1} \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{Symplectic}{}\subsubsection*{{On symplectic $\infty$-Lie algebroids -- The AKSZ Lagrangian}}\label{Symplectic} A [[symplectic Lie n-algebroid]] $(\mathfrak{a}, \omega)$ is a [[∞-Lie algebroid|Lie n-algebroid]] $\mathfrak{a}$ equipped with a binary non-degenerate [[invariant polynomial]] $\omega \in W(\mathfrak{a})$ of degree $n+2$. The corresponding Chern-Simons elements of $\omega$ are the integrands for the [[action functional]]s of various [[TQFT]] [[sigma-model]]s. With $\{-,-\} : CE(\mathfrak{a}) \otimes CE(\mathfrak{a}) \to CE(\mathfrak{a})$ the graded [[Poisson bracket]] induced by $\omega$ we have (see \hyperlink{Roytenberg}{Roytenberg}) that there exists a [[∞-Lie algebra cocycle]] $\mu \in CE(\mathfrak{a})$ such that \begin{displaymath} d_{CE(\mathfrak{a})} = \{\mu, -\} \,. \end{displaymath} So in particular $\mu$ being a cocycle means that \begin{displaymath} d_{CE(\mathfrak{a})} \mu = \{\mu, \mu\} = 0 \,. \end{displaymath} \begin{uprop} The cocycle $\mu$ is in transgression with the invariant polynomial $\frac{n}{2}\omega$ via the Chern-Simons element \begin{displaymath} \begin{aligned} cs &= \frac{1}{2 }\iota_{\epsilon} \omega - \mu \end{aligned} \,, \end{displaymath} where $\epsilon$ is the Euler vector field (\hyperlink{Roytenberg}{Roytenberg}). \end{uprop} Here $\mathbf{d}$ is the shift derivation in the [[Weil algebra]], in that $d_{W(\mathfrak{a})} = d_{CE(\mathfrak{a})} + \mathbf{d}$. \begin{proof} To safe typing signs, we write as if all functions were even graded. By standard reasoning the computation holds true then also for arbitrary grading. Observe that \begin{enumerate}% \item on unshifted generators we have \begin{displaymath} (\mathbf{d}x^b) \omega_{a b} \{x^a , -\} = \mathbf{d} \end{displaymath} \item we have graded commutators \begin{itemize}% \item $[\mathbf{d}, \iota_v] = N$ (the degree operator) \end{itemize} and \begin{itemize}% \item $[d_{CE(\mathfrak{a})}, \iota_v] = -d_{CE(\mathfrak{a})}\mathbf{d}^{-1}$. \end{itemize} (as one checks on generators). \end{enumerate} Therefore \begin{displaymath} \begin{aligned} d_{W(\mathfrak{a})} \frac{1}{2}\iota_{v} \omega &= [d_{W(\mathfrak{a})}, \iota_{v}] \frac{1}{2}\omega \\ & = (n - d_{CE(\mathfrak{a})} \mathbf{d}^{-1} ) \frac{1}{2}\omega \\ & = \frac{n}{2}\omega - \omega_{a b} \{\mu, x^a\} \mathbf{d}x^b \\ &= \frac{1}{2} \omega + \mathbf{d}\mu \end{aligned} \,, \end{displaymath} where in the first line we used that by definition of [[invariant polynomial]] $d_{W(\mathfrak{a})} \omega = 0$. Similarly, using that by definition $d_{CE(\mathfrak{a})} \mu = 0$ we have \begin{displaymath} d_{W(\mathfrak{a})} \mu = \mathbf{d}\mu \,. \end{displaymath} So in total we have \begin{displaymath} d_{W(\mathfrak{a})} (\frac{1}{2} \iota_\epsilon \omega - \mu) = \frac{1}{2}\omega \,. \end{displaymath} \end{proof} \hypertarget{remark_3}{}\paragraph*{{Remark}}\label{remark_3} In local coordinates where $\omega = \omega_{a b} \mathbf{d}x^a \wedge \mathbf{d}x^b$ we have \begin{displaymath} cs = n \omega_{a b} x^a \wedge \mathbf{d}x^b + \mu \,. \end{displaymath} The Chern-Simons action functional corresponding to this Chern-Simons element on $\mathfrak{a}$ is that considered in [[AKSZ theory]]. Below we spell out some low-dimensional cases explicitly. \hypertarget{higher_phase_space_hamiltonian_and_lagrangian_mechanics}{}\paragraph*{{Higher phase space ---Hamiltonian and Lagrangian mechanics}}\label{higher_phase_space_hamiltonian_and_lagrangian_mechanics} The symplectic Lie $n$-algebroid $(\mathfrak{P}, \omega)$ may be thought of as an [[n-symplectic manifold]] that models the [[phase space]] of a physical system. This means for $(\mathfrak{g},\langle-\rangle) = (\mathfrak{P}, \omega)$ a symplectic Lie $n$-algebroid, the general diagram \eqref{TheDiagram} exhibiting the transgression between cocycles and invariant polynomials via Chern-Simons elements may be labeled in terms of [[Hamiltonian mechanics]], [[Lagrangian mechanics]] and [[symplectic geometry]] as follows \begin{equation} \itexarray{ CE(\mathfrak{P}) &\stackrel{H}{\leftarrow}& CE(b^{n}\mathbb{R}) &&& Hamiltonian \\ \uparrow && \uparrow \\ W(\mathfrak{P}) &\stackrel{L}{\leftarrow}& W(b^n \mathbb{R}) &&& Lagrangian \\ \uparrow && \uparrow \\ inv(\mathfrak{P}) &\stackrel{\omega}{\leftarrow}& inv(b^n \mathbb{R}) &&& symplectic\;structure } \label{PhysicsDiagram}\end{equation} =-- See [[Hamiltonian]], [[Lagrangian]], [[symplectic structure]]. \hypertarget{on_a_symplectic_manifold__the_topological_particle}{}\paragraph*{{On a symplectic manifold -- The topological particle}}\label{on_a_symplectic_manifold__the_topological_particle} For $X$ a [[smooth manifold]] we may regard its cotangent bundle $\mathfrak{a} = T^* X$ as a Lie 0-algebroid and the canonical 2-form $\omega \in W(\mathfrak{a}) = \Omega^\bullet(X)$ as a binary invariant polynomial in degree 2. The Chern-Simons element is the canonical 1-form $\alpha$ which in local coordinates is $\alpha = p_i d q^i$. The corresponding action functional on the line \begin{displaymath} \int_{\mathbb{R}} \gamma^* (p_i\, d q^i) \end{displaymath} is the familiar term for the action functional of the particle (missing the kinetic term, which makes it ``topological''). \hypertarget{on_a_poisson_lie_algebroid__the_poisson_model}{}\paragraph*{{On a Poisson Lie algebroid -- The Poisson $\sigma$-model}}\label{on_a_poisson_lie_algebroid__the_poisson_model} \begin{uprop} Let $\mathfrak{a} = \mathfrak{P}(X,\pi)$ by a [[Poisson Lie algebroid]]. This comes with the canonical [[invariant polynomial]] $\omega = \mathbf{d} \partial_i \wedge \mathbf{d} x^i$. The corresponding [[∞-Lie algebroid cocycle]] is \begin{displaymath} \mu_{\omega} = \pi \end{displaymath} and a Chern-Simons element for this is \begin{displaymath} cs_\omega = \pi^{i j} \partial_i \wedge \partial_j + \partial_i \wedge \mathbf{d}x^i \,. \end{displaymath} For $\Sigma$ a 2-[[dimensional]] [[smooth manifold]] the corresponding [[action functional]] on [[∞-Lie algebroid-valued forms]] $S : \Omega^\bullet(X, \mathfrak{P}(X,\pi)) \to \mathbb{R}$ is the actional functional of the [[Poisson sigma-model]] \begin{displaymath} S : (X, \eta) \mapsto \int_\Sigma (\eta \wedge d X + \pi(\eta \wedge \eta) \,. \end{displaymath} \end{uprop} \begin{proof} We compute in a local coordinte patch: \begin{displaymath} \begin{aligned} d_{W(\mathfrak{P}(X,\pi))} (\pi^{i j} \partial_i \wedge \partial_j + \partial_i \wedge \mathbf{d} x^i) = & \mathbf{d}x^k (\partial_k \pi^{i j}) \partial_i \wedge \partial_j \\ & + 2 \pi^{i j} (\mathbf{d}\partial_i) \wedge \partial_j \\ & - (\partial_i \pi^{j k}) \partial_j \wedge \partial_k \wedge \mathbf{d}x^i \\ & + (\mathbf{d}\partial_i)\wedge (\mathbf{d} x^i) \\ & + (-)(-) 2\pi^{i j} \partial_i \wedge \mathbf{d}\partial_j \\ = & (\mathbf{d}\partial_i)\wedge (\mathbf{d} x^i) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{on_higher_extensions_of_the_super_poincare_lie_algebra__supergravity}{}\subsubsection*{{On higher extensions of the super Poincare Lie algebra -- supergravity}}\label{on_higher_extensions_of_the_super_poincare_lie_algebra__supergravity} See [[D'Auria-Fre formulation of supergravity]] for the moment. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[∞-Lie algebroid cocycle]] \item \textbf{Chern-Simons element} \item [[invariant polynomial]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A classical reference on transgression of differential forms from the fiber to the base of a [[fiber bundle]] is section 9 of. \begin{itemize}% \item [[Armand Borel]], \emph{Topology of Lie groups and characteristic classes} Bull. Amer. Math. Soc. Volume 61, Number 5 (1955), 397-432. (\href{http://projecteuclid.org/euclid.bams/1183520007}{EUCLID}) \end{itemize} The general definition of Chern-Simons element on $\infty$-Lie algebras and $\infty$-Lie algebroids is in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{$L_\infty$-connections} () \end{itemize} The examples of the [[BF-theory]] invariant polynomials and Chern-Simons elements are in and and the BF-action functional itself is extracted below . Dedicated discussion of $\infty$-Chern-Simons theory is at \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]] [[Urs Schreiber]], \emph{[[schreiber:∞-Chern-Simons functionals]]} \end{itemize} A comprehensive account is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} . \end{itemize} A survey of higher Chern-Simons elements and their action functionals as applied to [[gravity]] and [[supergravity]] is in \begin{itemize}% \item Jorge Zanelli, \emph{Lecture notes on Chern-Simons (super-)gravities} \href{http://arxiv.org/abs/hep-th/0502193}{arXiv:0502193} \end{itemize} Symplectic Lie $n$-algebroids are discussed in \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{Courant algebroids, derived brackets and even symplectic supermanifolds} PhD thesis (\href{http://arxiv.org/abs/math/9910078}{arXiv}) \emph{On the structure of graded symplectic supermanifolds and Courant algebroids} (\href{http://arxiv.org/abs/math/0203110}{arXiv}) \end{itemize} A talk about the historical origins of the standard Chern-Simons forms see \begin{itemize}% \item [[Jim Simons]], \emph{Origin of Chern-Simons} talk at Simons Center for Geometry and Physics (2011) (\href{http://media.scgp.stonybrook.edu/video/video.php?f=20110728_1_qtp.mp4}{video}) \end{itemize} [[!redirects Chern-Simons elements]] [[!redirects generalized Chern-Simons theory]] [[!redirects generalized Chern-Simons theories]] [[!redirects ∞-Chern-Simons theory]] \end{document}