\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chern-Weil homomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{plain_chernweil_homomorphism}{Plain Chern-Weil homomorphism}\dotfill \pageref*{plain_chernweil_homomorphism} \linebreak \noindent\hyperlink{refined_chernweil_homomorphism}{Refined Chern-Weil homomorphism}\dotfill \pageref*{refined_chernweil_homomorphism} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $G$ a [[Lie group]] with [[Lie algebra]] $\mathfrak{g}$, a $G$-[[principal bundle]] $P \to X$ on a [[smooth manifold]] $X$ induces a collection of classes in the [[de Rham cohomology]] of $X$: the classes of the [[curvature characteristic form]]s \begin{displaymath} \langle F_A \wedge \cdots F_A \rangle \in \Omega^{2n}_{closed}(X) \end{displaymath} of the [[curvature]] 2-form $F_A \in \Omega^2(P, \mathfrak{g})$ of any [[connection on a bundle|connection]] on $P$, and for each [[invariant polynomial]] $\langle -\rangle$ of arity $n$ on $\mathfrak{g}$. This is a map from the first [[nonabelian cohomology]] of $X$ with coefficients in $G$ to the [[de Rham cohomology]] of $X$ \begin{displaymath} char : H^1(X,G) \to \prod_{n_i} H_{dR}^{2 n_i}(X) \end{displaymath} where $i$ runs over a set of generators of the invariant polynomials. This is the analogy in [[nonabelian cohomology|nonabelian]] [[differential cohomology]] of the generalized [[Chern character]] map in [[generalized (Eilenberg-Steenrod) cohomology|generalized Eilenberg-Steenrod]]-[[differential cohomology]]. \hypertarget{plain_chernweil_homomorphism}{}\subsection*{{Plain Chern-Weil homomorphism}}\label{plain_chernweil_homomorphism} This subsection is to give an outline of construction of Weil homomorphism as in \hyperlink{KobayashiNomizu63}{Kobayashi-Nomizu 63} Let $G$ be a [[Lie group]] and $\mathfrak{g}$ be its [[Lie algebra]]. Given an element $g\in G$, the adjoint map $Ad(g):G\rightarrow G$ is defined as $Ad(g)(h)=ghg^{-1}$. For $g\in G$, let $ad(g):\mathfrak{g}\rightarrow \mathfrak{g}$ be the differenial of $Ad(g):G\rightarrow G$ at $e\in G$. Let $I^k(G)$ denote the set of symmetric, multilinear maps \begin{displaymath} f:\underbrace{\mathfrak{g}\times\cdots\times\mathfrak{g}}_{k ~\text{times}}\rightarrow \mathbb{R} \end{displaymath} that are $G$ invariant in the sense that $f(ad(g)(t_1),\cdots,ad(g)(t_k))=f(t_1,\cdots,t_k)$ for all $g\in G$ and $t_i\in \mathfrak{g}$. These $I^k(G)$ are vector spaces over $\mathbb{R}$. Let $I(G)$ denote the $\mathbb{R}$ algebra $\oplus_{k=0}^{\infty}I^k(G)$. Let $M$ be a manifold and $H^*(M,\mathbb{R})$ be the deRham cohomology ring of $M$. Given a principal $G$ bundle over $M$, say $\pi:P\rightarrow M$, Weil homomorphism gives a homomorphism $I(G)\rightarrow H^*(M,\mathbb{R})$. Though it does not depend on connection on $P(M,G)$, the construction of this map is done after fixing a connection on $P(M,G)$. Outline of the construction is as follows. \begin{enumerate}% \item Fix a connection $\Gamma$ on $P(M,G)$. Let $\Omega$ denote the curvature of $\Gamma$. \item Given an element $f\in I^k(G)$, define a $2k$-form $f(\Omega)$on $P$. $\backslash$item Prove that the $2k$ form $f(\Omega)$ on $P$ projects uniquely to a $2k$ form on $M$ and call it $\tilde{f}(\Omega)$ i.e., $\pi^*(\tilde{f}(\Omega))=f(\Omega)$. \item Next step is to prove that $\tilde{f}(\Omega)$ is closed $2k$ form on $M$. To prove $\tilde{f}(\Omega)$ is closed, it suffices to prove that $f(\Omega)$ is closed. \item For a \textbf{special} $k$-form $\varphi$ on $P$, the exterior differential $d\varphi$ coincides with the exterior covariant differential $D\varphi$ of $\varphi$ i.e., $d\varphi=D\varphi$. That \textbf{special} property is that $\varphi=\pi^*\sigma$ for some $k$-form $\sigma$ on $M$. \item As $f(\Omega)$ has that \textbf{special} property, we see that $d(f(\Omega))=D(f(\Omega))$. \item By Bianchi's identity, we have $D\Omega=0$. We then see that $D\Omega=0$ implies that $D(f(\Omega))=0$ i.e., $d(f(\Omega))=D(f(\Omega))=0$ for $f\in I^k(G)$ i.e., $f(\Omega)$ is a closed $2k$-form on $P$. Thus, $\tilde{f}(\Omega)$ is a closed $2k$-form on $M$, giving an element in the deRham cohomology $H^{2k}(M,\mathbb{R})$. \item Next step is to prove that, this assignment $f\mapsto \tilde{f}(\Omega)$ does not depend on the connection $\Gamma$ that we have started with i.e., for connections $\Gamma_0$ (with curvature form $\Omega_0$) and $\Gamma_1$ (with curvature form $\Omega_1$), the elements $\tilde{f}(\Omega_0)$ and $\tilde{f}(\Omega_1)$ are in the same equivalence class i.e., $\tilde{f}(\Omega_0)-\tilde{f}(\Omega_1)$ is an exact form i.e., $\tilde{f}(\Omega_0)-\tilde{f}(\Omega_1)=d\tilde{\Phi}$ for some $2k-1$ form $\tilde{\Phi}$ on $M$. \item Using lemma \ref{useful}, to prove $\tilde{f}(\Omega_0)-\tilde{f}(\Omega_1)=d\tilde{\Phi}$ for some $2k-1$ form $\tilde{\Phi}$ on $M$, it suffices to prove that $f(\Omega_0)-f(\Omega_1)=d \Phi$ for some $2k-1$ form $\Phi$ on $P$ that projects to a unique $2k-1$ form $\tilde{\Phi}$ on $M$. \item We then see that $f(\Omega_0)-f(\Omega_1)=d \Phi$ for some $2k-1$ form $\Phi$ on $P$ that projects to a unique $2k-1$ form $\tilde{\Phi}$ on $M$. This confirm that the assignment $f\mapsto f(\Omega)$ is independent of the connection $\Gamma$ that we have started with. We can extend this linearly to $I(G)\rightarrow H^*(M,\mathbb{R})$. \end{enumerate} Given a principal bundle $\pi:P\rightarrow M$ the morphism defined above $I(G)\rightarrow H^*(M,\mathbb{R})$ is called the Weil homomorphism. \hypertarget{refined_chernweil_homomorphism}{}\subsection*{{Refined Chern-Weil homomorphism}}\label{refined_chernweil_homomorphism} We describe the \emph{refined} Chern-Weil homomorphism (which associates a class in [[ordinary differential cohomology]] to a [[principal bundle]] with [[connection on a bundle|connection]]) in terms of the [[universal connection]] on the [[universal principal bundle]]. We follow (\hyperlink{HopkinsSinger}{HopkinsSinger, section 3.3}). \begin{itemize}% \item Let $G$ be a [[compact space|compact]] [[Lie group]] \item with [[Lie algebra]] $\mathfrak{g}$; \item and write $inv(\mathfrak{g})$ for the [[dg-algebra]] of [[invariant polynomial]]s on $\mathfrak{g}$ (which has trivial differential). \item Write $B^{(n)}G$ for the smooth level $n$ [[classifying space]] \item and $B G := {\lim_\to}_n B^{(n)}G$ for the [[colimit]], a smooth model of the [[classifying space]] of $G$. \item Write $\nabla_{univ}$ for the [[universal connection]] on $E G \to B G$. \item Let $[c] \in H^k(B G, \mathbb{Z})$ be a [[characteristic class]] \item and choose a refinement $[\hat \mathbf{c}] \in H_{diff}^k(B G)$ in [[ordinary differential cohomology]] represented by a [[differential function complex|differential function]] \begin{displaymath} (c, h, w) \in C^k(B G, \mathbb{Z}) \times C^{k-1}(B G, \mathbb{R}) \times (W(\mathfrak{g}) \simeq C^k(B G, \mathbb{R}))^k \,. \end{displaymath} \end{itemize} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[smooth manifold]], $P \to X$ a smoth $G$-[[principal bundle]] with smooth classifying map $f : X \to B G$ and [[connection on a bundle|connection]] $\nabla$. Write $CS(\nabla, f^* \nabla_{univ})$ for the [[Chern-Simons form]] for the interpolation between $\nabla$ and the pullback of the universal connection along $f$. Then defined the cocycle in [[ordinary differential cohomology]] given by the [[differential function complex|function complex]] \begin{displaymath} \hat \mathbf{c} := (f^* c , f^* h + CS(\nabla, f^* \nabla_{univ}), w(F_{\nabla_t})) \in (c, h, w) \in C^k(B G, \mathbb{Z}) \times C^{k-1}(B G, \mathbb{R}) \times \Omega_{cl}^k(X) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The above construction constitutes a map \begin{displaymath} \hat \mathbf{c} : G Bund_\nabla(X)_\sim \to H_{diff}^k(X) \end{displaymath} from [[equivalence class]]es of $G$-[[principal bundle]]s with [[connection on a bundle|connection]] to degree $k$ [[ordinary differential cohomology]]. \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Gauss-Bonnet theorem]] \end{itemize} (\ldots{}) \hypertarget{references}{}\subsection*{{References}}\label{references} Textbook accounts include \begin{itemize}% \item Shoshichi Kobayashi, Katsumi Nomizu, \emph{Foundations of Differential Geometry}, Wiley 1963 (\href{https://www.zuj.edu.jo/download/foundations-of-differential-geometry-vol-1-kobayashi-nomizu-pdf/}{web}, \href{https://en.wikipedia.org/wiki/Foundations_of_Differential_Geometry}{Wikipedia}) \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], \emph{[[Connections, Curvature, and Cohomology]]} Academic Press (1973) \end{itemize} The description of the refined Chern-Weil homomorphism in terms of [[differential function complex]]es is in section 3.3. of \begin{itemize}% \item [[Mike Hopkins]], [[Isadore Singer]], \emph{[[Quadratic Functions in Geometry, Topology,and M-Theory]]} \end{itemize} For more references see [[Chern-Weil theory]]. [[!redirects Weil homomorphism]] \end{document}