\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chern-Weil theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{to_principal_bundles}{To principal $\infty$-bundles}\dotfill \pageref*{to_principal_bundles} \linebreak \noindent\hyperlink{in_noncommutative_geometry}{In noncommutative geometry}\dotfill \pageref*{in_noncommutative_geometry} \linebreak \noindent\hyperlink{examples_and_applications}{Examples and applications}\dotfill \pageref*{examples_and_applications} \linebreak \noindent\hyperlink{History}{History}\dotfill \pageref*{History} \linebreak \noindent\hyperlink{further_references}{Further References}\dotfill \pageref*{further_references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Chern-Weil theory studies the refinement of [[characteristic class]]es of [[principal bundle]]s in ordinary [[cohomology]] to [[de Rham cohomology]] and further to [[ordinary differential cohomology]]. The central operation that models this refinement is the construction of the [[Chern-Weil homomorphism]] from $G$-[[principal bundle]]s to [[de Rham cohomology]] by choosing a [[connection on a bundle|connection]] $\nabla$ and evaluating its [[curvature]] form $F_\nabla$ in the [[invariant polynomial]]s $\langle -\rangle$ of the [[Lie algebra]] $\mathfrak{g}$ to produce the [[curvature characteristic form]] $\langle F_\nabla \rangle$. Its de Rham cohomology class refines a corresponding [[characteristic class]] in [[integral cohomology]]. Concretely, the [[nLab:Chern-Weil homomorphism]] is presented by the following construction: For \begin{itemize}% \item $B G \in$ [[nLab:Top]] the [[nLab:classifying space]] of (the [[nLab:topological group]] underlying) a [[nLab:compact space|compact]] [[nLab:Lie group]] $G$ \item and $[c] \in H^n(B G, \mathbb{Z})$ a class in its [[nLab:integral cohomology]] -- which we may call a \emph{[[nLab:characteristic class]]} for $G$-[[nLab:principal bundles]] \end{itemize} we get for each [[nLab:smooth manifold]] $X$ an assignment \begin{displaymath} [c] : G Bund(X)_\sim \to H^n(X,\mathbb{Z}) \end{displaymath} on integral cohomology classes of base space to equivalence classes of $G$-[[principal bundle]]s by sending a bundle classified by a map $f : X \to B G$ to the class $[f^* c]$. Let $[c]_\mathbb{R} \in H^n(B G, \mathbb{R})$ be the image of $[c]$ in [[real cohomology]], induced by the evident inclusion of [[coefficients]] $\mathbb{Z} \hookrightarrow \mathbb{R}$. The \textbf{first main statement} of Chern-Weil theory is that there is an [[nLab:invariant polynomial]] \begin{displaymath} \langle- \rangle := \phi^{-1} [c]_{\mathbb{R}} \end{displaymath} on the [[nLab:Lie algebra]] $\mathfrak{g}$ of $G$ associated to $[c]_{\mathbb{R}}$, given by an [[nLab:isomorphism]] (of real [[nLab:graded vector space]])s \begin{displaymath} \phi : inv(\mathfrak{g}) \stackrel{\simeq}{\to} H^\bullet(B G, \mathbb{R}) \,. \end{displaymath} The \textbf{second main statement} is that this invariant polynomial serves to provide a \emph{differential} ([[nLab:Lie integration]]) construction of $[c]_{\mathbb{R}}$: for any choice of [[nLab:connection on a bundle|connection]] $\nabla$ on a $G$-principal bundle $P \to X$ we have the [[nLab:curvature]] 2-form $F_\nabla \in \Omega^2(P, \mathfrak{g})$ and fed into the invariant polynomial this yields an $n$-form \begin{displaymath} \langle F_\nabla \wedge \cdots \wedge F_\nabla \rangle \in \Omega^n(X) \,. \end{displaymath} The statement is that under the [[nLab:de Rham theorem]]-isomorphism $H^\bullet_{dR}(X) \simeq H^\bullet(X, \mathbb{R})$ this presents the class $[c]_{\mathbb{R}}$. The \textbf{third main statement}, says that this construction may be refined by combining [[nLab:integral cohomology]] and [[nLab:de Rham cohomology]] to [[nLab:ordinary differential cohomology]]: the $n$-form $\langle F_\nabla \wedge \cdots F_\nabla\rangle$ may be realized itself as the [[nLab:curvature]] $n$-form of a [[nLab:circle n-bundle with connection]] $\hat \mathbf{c}$. \begin{displaymath} [\hat \mathbf{c}] : G Bund_\nabla(X)_\sim \to U(1) n Bund_\nabla(X)_\sim \simeq H^n_{diff}(X) \,. \end{displaymath} In summary this yields the following picture: \begin{displaymath} \itexarray{ && [\hat \mathbf{c}] \\ & \swarrow && \searrow \\ [c] && && [\langle F_\nabla \wedge \cdots F_\nabla\rangle] \\ & \searrow && \swarrow \\ && [c]_{\mathbb{R}} } \;\;\;\;\;\;\;\;\; \in \;\;\;\;\;\;\;\;\; \itexarray{ && H_{diff}^n(X) \\ & \swarrow && \searrow \\ H^n(X,\mathbb{Z}) && && H_{dR}^n(X) \\ & \searrow && \swarrow \\ && H^n(X, \mathbb{R}) } \,. \end{displaymath} A central \textbf{implication} of the last step is that with the refinement from [[nLab:curvature]]s in [[nLab:de Rham cohomology]] to [[nLab:circle n-bundles with connection]] in [[nLab:differential cohomology]] is that these come with a notion of [[nLab:higher parallel transport]] and higher [[nLab:holonomy]]: \begin{itemize}% \item the local connection form of $\hat \mathbf{c}$ is the [[nLab:Chern-Simons form]] $cs(\nabla)$ of a [[nLab:Chern-Simons element]] $cs$ of the [[nLab:invariant polynomial]] $\langle- \rangle$ evaluated on the given $G$-[[nLab:connection on a bundle|connection]]; \item the corresponding [[nLab:higher parallel transport]] as an assignment \begin{displaymath} (\Sigma \stackrel{\phi}{\to} X) \mapsto \exp(\int_\Sigma \nabla_{\hat \mathbf{c}}) \in U(1) \end{displaymath} of $(n-1)$-[[nLab:dimension]]al manifolds in $X$ to the [[nLab:circle group]] is the [[nLab:action functional]] of the corresponding [[nLab:Chern-Simons theory]]. \end{itemize} Specifically \begin{itemize}% \item for $\langle -,-\rangle$ the [[nLab:Killing form]] invariant polynomial on a [[nLab:semisimple Lie algebra]], one calls $\hat \mathbf{c}$ the [[Chern-Simons circle 3-bundle]]; whose higher [[holonomy]] is the [[nLab:action functional]] of ordinary [[nLab:Chern-Simons theory]]; \item for $\langle -,-,-,-\rangle$ the next higher invariant polynomial on a semisimple Lie algebra, $\hat \mathbf{c}$ is a [[Chern-Simons circle 7-bundle]], and so on. \end{itemize} So the refined Chern-Weil homomorphism provides a large family of [[nLab:gauge theory|gauge]] [[nLab:quantum field theories]] of Chern-Simons type in odd [[nLab:dimension]]s whose field configurations are always [[nLab:connection on a bundle|connections]] on [[nLab:principal bundle]]s and whose [[nLab:Lagrangian]]s are [[nLab:Chern-Simons element]]s on a [[nLab:Lie algebra]]. But the notion of [[nLab:invariant polynomial]]s and [[nLab:Chern-Simons element]]s naturally exists much more generally for [[nLab:L-∞ algebra]]s, and even more generally for [[nLab:L-∞ algebroid]]s. We claim here that in this fully general case there is still a natural analog of the Chern-Weil homomorphism -- which we call the \emph{[[nLab:∞-Chern-Weil homomorphism]]} . Accordingly this gives rise to a wide class of [[nLab:action functional]]s for [[nLab:gauge theory|gauge]] [[nLab:quantum field theories]], which may be called \emph{[[schreiber:∞-Chern-Simons theories]}. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{to_principal_bundles}{}\subsubsection*{{To principal $\infty$-bundles}}\label{to_principal_bundles} The notions of [[Lie group]], [[Lie algebra]], [[principal bundle]] and all the other ingredients of ordinary Chern-Weil theory generalize to notions in [[higher category theory]] such as [[∞-Lie group]], [[∞-Lie algebra]], [[principal ∞-bundle]] etc. The generalization of Chern-Weil theory to this context is discussed at \begin{itemize}% \item [[∞-Chern-Weil theory]]. \end{itemize} \hypertarget{in_noncommutative_geometry}{}\subsubsection*{{In noncommutative geometry}}\label{in_noncommutative_geometry} There is a [[noncommutative geometry|noncommutative]] analogue discussed in (\hyperlink{AlekseevMeinrenken}{AlekseevMeinrenken2000}). \hypertarget{examples_and_applications}{}\subsection*{{Examples and applications}}\label{examples_and_applications} \begin{itemize}% \item [[de Rham theorem]] \item [[Gauss-Bonnet theorem]] \item [[differential string structure]] \item [[differential fivebrane structure]] \end{itemize} \hypertarget{History}{}\subsection*{{History}}\label{History} \begin{quote}% (following notes provided by [[Jim Stasheff]]) \end{quote} The beginnings of the [[rational homotopy theory]] of [[Lie group]]s $G$ and hence their [[dg-algebra]]-description in terms of the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{g})$ originate in the first half of the 20th century. In his survey of what was known in 1936 on the homology of compact Lie groups \begin{itemize}% \item [[Eli Cartan]], \emph{La topologie des espaces repr\'e{}sentatifs des groupes de Lie} Act. Sci. Ind., No. 358, Hermann, Paris, (1936). reprinted in \emph{Cartan's Complete Works} vol $I_2$ pp. 1307-1330 \end{itemize} E. Cartan conjectured that there should be a general result implying that the [[homology]] of the [[classical Lie group]]s is the same as the homology of a product of odd-dimensional [[sphere]]s. In particular, he lists the [[Poincare polynomial]]s for classical simple compact Lie groups. In \begin{itemize}% \item [[Heinz Hopf]], \emph{\"U{}ber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen} (German) Ann. of Math. (2) 42, (1941). 22--52. \end{itemize} Hopf showed that such a characterization in terms of homology groups as [[intersection pairing]] algebras holds for any [[compact space|compact]] [[dimension|finite dimensional]] [[connected]] [[orientable]] [[manifold]] with a map $m:M\times M\to M$ such that left and right translation have non-zero degrees. Later in \begin{itemize}% \item [[Shiing-shen Chern]], \emph{Differential geometry of fiber bundles} Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pages 397-411, Amer. Math. Soc., Providence, R. I. (1952) \end{itemize} with the development of [[cohomology]], especially [[de Rham cohomology]], this was stated as $H^\bullet(G)$ being [[isomorphic]] to an [[exterior algebra]] on odd dimensional generators: the generating [[Lie algebra cohomology]] [[cocycle]]s $\mu \in CE(\mathfrak{g})$, $d_{CE(\mathfrak{g})} \mu = 0$. Henri Cartan in \begin{itemize}% \item [[Henri Cartan]], \emph{Notions d'alg\'e{}bre diff\'e{}rentielle; applications aux groupes de Lie et aux vari\'e{}t\'e{}s o\`u{} op\`e{}re un groupe de Lie} , Coll. Topologie Alg\'e{}brique Bruxelles (1950) 15-28 section 7, titled \emph{Classes caracteristiques (reelles) d'un espace fibre principal} \end{itemize} at the end (1951) of an era of deRham cohomology dominence (prior to Serre's thesis) abstracted the [[differential geometry|differential geometric]] approach of Chern-Weil and the [[Weil algebra]] $W(\mathfrak{g})$ to the [[dg-algebra]] context with his notion of \emph{$\mathfrak{g}$-algebras $A$} . This involves what is known sometimes as the [[Cartan calculus]]. In addition to the differential $d$ of [[differential form]]s on a [[principal bundle]], Cartan abstracts the inner product aka contraction of differential forms with [[vector field]]s $X$ and the [[Lie derivative]] $\mathcal{L}_X$ with respect to vector fields. that is, he posits 3 operators on a differential-graded-commutative alggebra (dgca): $d$ of degree 1, $i_X$ of degree -1 and $L_X$ of degree 0 for X in $\mathfrak{g}$ subject to the relations: \begin{itemize}% \item $[\iota_X,\iota_Y] = \iota_{[X,Y]}$ \item $[\mathcal{L}_X,\iota_Y]= \iota_{[X,Y]}$ \end{itemize} and perhaps most useful \begin{itemize}% \item $\mathcal{L}_X = d \iota_X + i\iota_X d$ \end{itemize} This is what he terms a $\mathfrak{g}$-algebra. For Cartan, an infinitesimal [[connection on a bundle|connection]] on a [[principal bundle]] $P \to X$ are projectors (at each point $p$ of $P$) $\phi_p: T_p P\to T_p^{vert}$ equivariant with repect to the $G$-action. This can be abstracted to a morphism \begin{displaymath} \Omega^\bullet(P) \leftarrow \mathfrak{g}^* : A \end{displaymath} of [[graded vector space]]s of degree 1 -- equivalently a [[Lie-algebra valued 1-form]] $A \in \Omega^1(P,\mathfrak{g})$ -- such that the two [[Ehresmann connection|Ehresmann condition]]s hold: \begin{enumerate}% \item restricted to the fibers the 1-form $A$ is the [[Maurer-Cartan form]] $\iota_X A(h) = \iota_X h$ \item the form is equivariant in that $\mathcal{L}_X A (h) = A(\mathcal{L}_X h)$ \end{enumerate} for all $X\in \mathfrak{g}$ and $h\in \mathfrak{g}^*$. This data Cartan calls an \emph{algebraic connection} . He then extends such an $A$ to a [[homomorphism]] of [[graded algebra]]s \begin{displaymath} \Omega^\bullet(P) \leftarrow CE(\mathfrak{g}) : A \end{displaymath} from the [[Chevalley-Eilenberg algebra]] $\wedge^\bullet \mathfrak{g}^*$. In general, this will not respect the differentials, hence not be a morphism of [[dg-algebra]]s. In fact, the deviation gives the [[curvature]] of the connection: the curvature tensor is the map $h\mapsto d_{dR} A(h)-A(d_{CE} h)$. \begin{quote}% Jim: HAVE TO BREAK OFF NOW - WHAT WILL COME NEXT IS the [[Weil algebra]] $W(\mathfrak{g})$ as a Cartan $\mathfrak{g}$-algebra \end{quote} \begin{itemize}% \item Weil, \emph{Geometrie differentielle des espaces fibres} (1949, unpublished) appears in Vol. 1, pp. 422-436, of his Collected Papers. \end{itemize} \hypertarget{further_references}{}\subsection*{{Further References}}\label{further_references} Early original references are \begin{itemize}% \item [[Henri Cartan]], \emph{Notions d'alg\'e{}bre diff\'e{}rentielle; applications aux groupes de Lie et aux vari\'e{}t\'e{}s o\`u{} op\`e{}re un groupe de Lie} , Coll. Topologie Alg\'e{}brique Bruxelles (1950) 15-28 section 7, titled \emph{Classes caracteristiques (reelles) d'un espace fibre principal} \item [[Shiing-shen Chern]], \emph{Differential geometry of fiber bundles} Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pages 397-411, Amer. Math. Soc., Providence, R. I. (1952) \end{itemize} An overview with a collection of references is \begin{itemize}% \item \emph{Connections on vector bundles and the Gauss-Bonnet theorem} (\href{http://www.supermanifold.com/connections.pdf}{pdf}) \end{itemize} A classical textbook reference is \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], \emph{[[Connections, Curvature, and Cohomology]]} Academic Press (1973) \end{itemize} A review of much of the theory and comments on applications to [[elliptic genus|elliptic genera]] is in \begin{itemize}% \item Fei Han, \emph{Chern-Weil theory and some results on classic genera} (\href{http://math.berkeley.edu/~alanw/240papers03/han.pdf}{pdf}) \end{itemize} Some standard monographs are \begin{itemize}% \item [[Johan Louis Dupont]], \emph{Fibre bundles and Chern-Weil theory}, Lecture Notes Series \textbf{69}, Dept. of Math., University of Aarhus, Aarhus, 2003, 115 pp. \href{http://www.johno.dk/mathematics/fiberbundlestryk.pdf}{pdf} \item [[Johan Louis Dupont]], \emph{Curvature and characteristic classes}, Lecture Notes in Math. \textbf{640}, Springer-Verlag, Berlin-Heidelberg-New York, 1978. \item [[Mikhail Postnikov|?. ?. ?????????]], \emph{ . 4, } --- .: , 1988 \item [[Raoul Bott|R. Bott]], L. W. Tu, \emph{Differential forms in algebraic topology}, Graduate Texts in Mathematics \textbf{82}, Springer 1982. xiv+331 pp. \item V. Guillemin, S. Sternberg, \emph{Supersymmetry and equivariant de Rham theory}, Springer, 1999. \end{itemize} Lecture notes with an eye on [[Morse theory]] in terms of [[supersymmetric quantum mechanics]] are in \begin{itemize}% \item Weiping Zhang, \emph{Lectures on Chern-Weil theory and Witten deformations} , Nankai Tracts in Mathematics - Vol. 4 (\href{http://www.worldscibooks.com/mathematics/4756.html}{web}) \end{itemize} Chern-Weil theory in the context of noncommutative geometry is discussed in \begin{itemize}% \item A. Alekseev, E. Meinrenken, \emph{The non-commutative Weil algebra}, Invent. Math. \textbf{139}, n. 1, 135-172, 2000, \href{http://dx.doi.org/10.1007/s002229900025}{doi} \end{itemize} \end{document}