\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chevalley-Eilenberg algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{GradingConvention}{Grading conventions}\dotfill \pageref*{GradingConvention} \linebreak \noindent\hyperlink{OfLieAlgebra}{Of Lie algebras}\dotfill \pageref*{OfLieAlgebra} \linebreak \noindent\hyperlink{DefForLieAlg}{Definition}\dotfill \pageref*{DefForLieAlg} \linebreak \noindent\hyperlink{PropertiesForLieAlg}{Properties}\dotfill \pageref*{PropertiesForLieAlg} \linebreak \noindent\hyperlink{of_algebras}{Of $L_\infty$-algebras}\dotfill \pageref*{of_algebras} \linebreak \noindent\hyperlink{OfLieAlgebroids}{Of Lie algebroids}\dotfill \pageref*{OfLieAlgebroids} \linebreak \noindent\hyperlink{of_lie_algebroids_2}{Of $\infty$-Lie algebroids}\dotfill \pageref*{of_lie_algebroids_2} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{of_abelian_lie_algebras}{Of abelian Lie $n$-algebras}\dotfill \pageref*{of_abelian_lie_algebras} \linebreak \noindent\hyperlink{of_}{Of $\mathfrak{su}(2)$}\dotfill \pageref*{of_} \linebreak \noindent\hyperlink{of_the_tangent_lie_algebroid_}{Of the tangent Lie algebroid $T X$}\dotfill \pageref*{of_the_tangent_lie_algebroid_} \linebreak \noindent\hyperlink{of_the_string_lie_2algebra}{Of the string Lie 2-algebra}\dotfill \pageref*{of_the_string_lie_2algebra} \linebreak \noindent\hyperlink{weil_algebra}{Weil algebra}\dotfill \pageref*{weil_algebra} \linebreak \noindent\hyperlink{lie_algebra_cohomology}{Lie algebra cohomology}\dotfill \pageref*{lie_algebra_cohomology} \linebreak \noindent\hyperlink{brst_complex}{BRST complex}\dotfill \pageref*{brst_complex} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Chevalley-Eilenberg algebra} $CE(\mathfrak{g})$ of a [[Lie algebra]] is a [[differential graded algebra]] of elements dual to $\mathfrak{g}$ whose [[differential]] encodes the Lie bracket on $\mathfrak{g}$. The [[cochain cohomology]] of the underlying [[cochain complex]] is the [[Lie algebra cohomology]] of $\mathfrak{g}$. This generalizes to a notion of Chevalley-Eilenberg algebra for $\mathfrak{g}$ an [[L-∞-algebra]], a [[Lie algebroid]] and generally an [[∞-Lie algebroid]]. \hypertarget{GradingConvention}{}\subsection*{{Grading conventions}}\label{GradingConvention} This differential-graded subject is somewhat notorious for a plethora of equivalent but different conventions on gradings and signs. For the following we adopt the convention that for $V$ an $\mathbb{N}$-[[graded vector space]] we write \begin{displaymath} \begin{aligned} \wedge^\bullet V &:= Sym(V[1]) \\ & = k \oplus (V_0) \oplus (V_1 \oplus V_0 \wedge V_0) \oplus (V_2 \oplus V_1 \wedge V_0 \oplus V_0 \wedge V_0 \wedge V_0) \oplus \cdots \end{aligned} \end{displaymath} for the [[free construction|free]] graded-commutative algebra on the graded vector space obtained by shifting $V$ \emph{up} in degree by one. Here the elements in the $n$th term in parenthesis are in degree $n$. A plain vector space, such as the dual $\mathfrak{g}^*$ of the vector space underlying a Lie algebra, we regard her as a $\mathbb{N}$-graded vector space in degree 0. For such, $\wedge^\bullet \mathfrak{g}^*$ is the ordinary [[Grassmann algebra]] over $\mathfrak{g}^*$, where elements of $\mathfrak{g}^*$ are generators of degree 1. \hypertarget{OfLieAlgebra}{}\subsection*{{Of Lie algebras}}\label{OfLieAlgebra} \hypertarget{DefForLieAlg}{}\subsubsection*{{Definition}}\label{DefForLieAlg} The \emph{Chevalley-Eilenberg algebra} $CE(\mathfrak{g})$ of a finite dimensional [[Lie algebra]] $\mathfrak{g}$ is the [[semifree dga|semifree]] graded-commutative [[dg-algebra]] whose underlying graded algebra is the [[Grassmann algebra]] \begin{displaymath} \wedge^\bullet \mathfrak{g}^* = k \oplus \mathfrak{g}^* \oplus (\mathfrak{g}^* \wedge \mathfrak{g}^* ) \oplus \cdots \end{displaymath} (with the $n$th skew-symmetrized power in degree $n$) and whose [[differential]] $d$ (of degree +1) is on $\mathfrak{g}^*$ the dual of the Lie bracket \begin{displaymath} d|_{\mathfrak{g}^*} := [-,-]^* : \mathfrak{g}^* \to \mathfrak{g}^* \wedge \mathfrak{g}^* \end{displaymath} extended uniquely as a graded [[derivation]] on $\wedge^\bullet \mathfrak{g}^*$. That this differential indeed squares to 0, $d \circ d = 0$, is precisely the fact that the Lie bracket satisfies the [[Jacobi identity]]. If we choose a dual basis $\{t^a\}$ of $\mathfrak{g}^*$ and let $\{C^a{}_{b c}\}$ be the structure constants of the Lie bracket in that basis, then the action of the differential on the basis generators is \begin{displaymath} d t^a = - \frac{1}{2} C^a{}_{b c} t^b \wedge t^c \,, \end{displaymath} where here and in the following a sum over repeated indices is implicit. This has a more or less evident generalization to infinite-dimensional Lie algebras., \hypertarget{PropertiesForLieAlg}{}\subsubsection*{{Properties}}\label{PropertiesForLieAlg} One observes that for $\mathfrak{g}$ a vector space, the graded-commutative dg-algebra structures on $\wedge^\bullet \mathfrak{g}^*$ are precisely in bijection with Lie algebra structures on $\mathfrak{g}$: the dual of the restriction of $d$ to $\mathfrak{g}^*$ defines a skew-linear bracket and the condition $d^2 = 0$ holds if and only if that bracket satisfies the Jacobi identity. Moreover, morphisms if Lie algebras $\mathfrak{g} \to \mathfrak{h}$ are precisely in bijection with morphisms of dg-algebras $CE(\mathfrak{g}) \leftarrow CE(\mathfrak{h})$. And the $CE$-construction is functorial. Therefore, if we write $dgAlg_{sf,1}$ for the category whose objects are [[semifree dga]]s on generators in degree 1, we find that the construction of CE-algebras from Lie algebras constitutes a canonical [[equivalence of categories]] \begin{displaymath} LieAlg \stackrel{CE(-)}{\underset{\simeq}{\to}} (dgAlg_{sf,1})^{op} \,, \end{displaymath} where on the right we have the [[opposite category]]. This says that in a sense the Chevalley-Eilenberg algebra is just another way of looking at (finite dimensional) Lie algebras. There is an analogous statement not involving the dualization: Lie algebra structures on $\mathfrak{g}$ are also in bijection with the structure of a \emph{[[differential graded coalgebra]]} $(\vee^\bullet \mathfrak{g}, D)$ on the free graded-co-commutative coalgebra $\vee^\bullet \mathfrak{g}$ on $\mathfrak{g}$ with $D$ a [[derivation]] of degree -1 squaring to 0. The relation between the differentials is simply dualization \begin{displaymath} (\vee^\bullet \mathfrak{g}, D) \leftrightarrow (\wedge^\bullet \mathfrak{g}^* , d ) \end{displaymath} where for each $\omega \in \wedge^\bullet \mathfrak{g}^*$ we have \begin{displaymath} d \omega = \omega(D(-)) \,. \end{displaymath} \hypertarget{of_algebras}{}\subsection*{{Of $L_\infty$-algebras}}\label{of_algebras} The equivalence between Lie algebras and differential graded algebras/coalgebras discussed above suggests a grand generalization by simply generalizing the [[Grassmann algebra]] over a [[vector space]] $\mathfrak{g}^*$ to the Grassmann algebra over a [[graded vector space]]. If $\mathfrak{g}$ is a graded vector space, then a differential $D$ of degree -1 squaring to 0 on $\vee^\bullet \mathfrak{g}$ is precisely the same as equipping $\mathfrak{g}$ with the structure of an [[L-∞ algebra]]. Dually, this corresponds to a general [[semifree dga]] \begin{displaymath} CE(\mathfrak{g}) := (\wedge^\bullet \mathfrak{g}^*, d = D^*) \,. \end{displaymath} This we may usefully think of as the Chevalley-Eilenberg algebra of the $L_\infty$-algebra $\mathfrak{g}$. So \emph{every} commutative [[semifree dga]] (degreewise finite-dimensional) is the Chevaley-Eilenberg algebra of some [[L-∞ algebra]] of finite type. This means that many constructions involving [[dg-algebra]]s are secretly about [[∞-Lie theory]]. For instance the [[Sullivan construction]] in [[rational homotopy theory]] may be interpreted in terms of [[Lie integration]] of $L_\infty$-algebras. \hypertarget{OfLieAlgebroids}{}\subsection*{{Of Lie algebroids}}\label{OfLieAlgebroids} For $\mathfrak{a}$ a [[Lie algebroid]] given as \begin{itemize}% \item a [[vector bundle]] $E\to X$ \item with anchor map $\rho : E \to T X$ \item and bracket $[-,-] \;\colon\; \Gamma(E)\wedge_{\mathbb{R}} \Gamma(E) \to \Gamma(E)$ \end{itemize} the corresponding Chevalley-Eilenberg algebra is \begin{displaymath} CE(\mathfrak{a}) := \left(\wedge^\bullet_{C^\infty(X)} \Gamma(E)^*, d\right) \,, \end{displaymath} where now the [[tensor product]]s and dualization is over the ring $C^\infty(X)$ of [[smooth function]]s on the base space $X$ (with values in the [[real number]]s). The differential $d$ is given by the formula \begin{displaymath} (d\omega)(e_0, \cdots, e_n) = \sum_{\sigma \in Shuff(1,n)} sgn(\sigma) \rho(e_{\sigma(0)})(\omega(e_{\sigma(1)}, \cdots, e_{\sigma(n)})) + \sum_{\sigma \in Shuff(2,n-1)} sign(\sigma) \omega([e_{\sigma(0)},e_{\sigma(1)}],e_{\sigma(2)}, \cdots, e_{\sigma(n)} ) \,, \end{displaymath} for all $\omega \in \wedge^n_{C^\infty(X)} \Gamma(E)^*$ and $(e_i \in \Gamma(E))$, where $Shuff(p,q)$ denotes the set of $(p,q)$-[[shuffle]]s $\sigma$ and $sgn(\sigma)$ the [[signature]] $\in \{\pm 1\}$ of the corresponding [[permutation]]. For $X = *$ the point we have that $\mathfrak{a}$ is a Lie algebra and this definition reproduces the above definition of the CE-algebra of a Lie algebra (possibly up to an irrelevant global sign). \hypertarget{of_lie_algebroids_2}{}\subsection*{{Of $\infty$-Lie algebroids}}\label{of_lie_algebroids_2} See [[∞-Lie algebroid]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{of_abelian_lie_algebras}{}\subsubsection*{{Of abelian Lie $n$-algebras}}\label{of_abelian_lie_algebras} The CE-algebra of the Lie algebra of the [[circle group]] $\mathfrak{u}(1)$ is the graded-commutative dg-algebra on a single generator in degree 1 with vanishing differential. More generally, the $L_\infty$-algebra $b^n \mathfrak{u}(1)$ is the one whose CE algebra is the commutative dg-algebra with a single generator in degree $n+1$ and vanishing differential. \hypertarget{of_}{}\subsubsection*{{Of $\mathfrak{su}(2)$}}\label{of_} The CE-algebra of $\mathfrak{su}(2)$ has three generators $x, y, z$ in degree one and differential \begin{displaymath} d x_1 = x_2 \wedge x_3 \end{displaymath} and cyclically. \hypertarget{of_the_tangent_lie_algebroid_}{}\subsubsection*{{Of the tangent Lie algebroid $T X$}}\label{of_the_tangent_lie_algebroid_} For $X$ a [[smooth manifold]] and $T X$ its [[tangent Lie algebroid]], the corresponding CE-algebra is the [[de Rham algebra]] of $X$. \begin{displaymath} CE(T X) = (\wedge^\bullet_{C^\infty(X)} \Gamma(T^* X), d_{dR}) \,. \end{displaymath} For $(v_i \in \Gamma(T X))$ [[vector field]]s and $\omega \in \Omega^n = \wedge^n_{C^\infty(X)} \Gamma(T X)^*$ a [[differential form]] of degree $n$, the \hyperlink{OfLieAlgebroids}{formula for the CE-differential} \begin{displaymath} (d\omega)(v_0, \cdots, v_n) = \sum_{\sigma \in Sh(1,n)} sgn(\sigma) v_{\sigma(0)}(\omega(v_{\sigma(1)}, \cdots, v_{\sigma(n)})) + \sum_{\sigma \in Shuff(2,n-1)} sgn(\sigma) \omega([v_{\sigma(0)},v_{\sigma(1)}],v_{\sigma(2)}, \cdots, v_{\sigma(n)} ) \,, \end{displaymath} is indeed that for the de Rham differential. \hypertarget{of_the_string_lie_2algebra}{}\subsubsection*{{Of the string Lie 2-algebra}}\label{of_the_string_lie_2algebra} For $\mathfrak{g}$ a semisimple Lie algebra with binary [[invariant polynomial]] $\langle -,-\rangle$ -- the [[Killing form]] -- , the CE-algebra of the [[string Lie 2-algebra]] is \begin{displaymath} CE(\mathfrak{string}) = (\wedge^\bullet( \mathfrak{g}^+ \oplus \mathbb{R}^*[1]), d_{string}) \end{displaymath} where the differential restricted to $\mathfrak{g}^*$ is $[-,-]^*$ while on the new generator $b$ spanning $\mathbb{R}^*[1]$ it is \begin{displaymath} d b = \langle -, [-,-]\rangle \in \wedge^3 \mathfrak{g}^* \,. \end{displaymath} \hypertarget{weil_algebra}{}\subsubsection*{{Weil algebra}}\label{weil_algebra} For $\mathfrak{g}$ a [[Lie algebra]], the CE-algebra of the [[Lie 2-algebra]] given by the [[differential crossed module]] $(\mathfrak{g} \stackrel{Id}{\to} \mathfrak{g})$ is the [[Weil algebra]] $W(\mathfrak{g})$ of $\mathfrak{g}$ \begin{displaymath} CE(\mathfrak{g} \stackrel{Id}{\to} \mathfrak{g}) = W(\mathfrak{g}) \,. \end{displaymath} \hypertarget{lie_algebra_cohomology}{}\subsubsection*{{Lie algebra cohomology}}\label{lie_algebra_cohomology} [[Lie algebra cohomology]] of a $k$-[[Lie algebra]] $\mathfrak{g}$ with coefficients in the left $\mathfrak{g}$-module $M$ is defined as $H^*_{Lie}(\mathfrak{g},M) = Ext_{U\mathfrak{g}}^*(k,M)$. It can be computed as $Hom_{\mathfrak{g}}(V(\mathfrak{g}),M)$ (a similar story is for [[Lie algebra homology]]) where $V(\mathfrak{g})=U(\mathfrak{g})\otimes\Lambda^*(\mathfrak{g})$ is the [[Chevalley-Eilenberg chain complex]]. If $\mathfrak{g}$ is finite-dimensional over a field then $Hom_{\mathfrak{g}}(V(\mathfrak{g}),k) = CE(\mathfrak{g}) = \Lambda^* \mathfrak{g}^*$ is the underlying complex of the Chevalley-Eilenberg algebra, i.e. the [[Chevalley-Eilenberg cochain complex]] with trivial coefficients. A [[cocycle]] in degree n of the [[Lie algebra cohomology]] of a [[Lie algebra]] $\mathfrak{g}$ with values in the trivial module $\mathbb{R}$ is a morphism of [[L-∞ algebra]]s \begin{displaymath} \mathfrak{g} \to b^{n-1} \mathfrak{u}(1) \,. \end{displaymath} In terms of CE-algebras this is a [[dg-algebra]] morphism \begin{displaymath} CE(\mathfrak{g}) \leftarrow CE(b^{n-1}\mathfrak{u}(1)) \,. \end{displaymath} Since by the above example the dg-algebra on he right has a single generator in degree $n$ and vanishing differential, such a morphism is precisely the same thing as a degree $n$-element in $CE(\mathfrak{g})$, i.e. an element $\omega \in \wedge^n \mathfrak{g}^*$ which is closed under the CE-differential \begin{displaymath} d_{CE} \omega = 0 \,. \end{displaymath} This is what one often sees as the definition of a cocycle in [[Lie algebra cohomology]]. However, from the general point of view of [[cohomology]], it is better to think of the cocycle equivalently as the morphism $\mathfrak{g} \to b^{n-1}\mathfrak{u}(1)$. \hypertarget{brst_complex}{}\subsubsection*{{BRST complex}}\label{brst_complex} In [[physics]], the Chevalley-Eilenberg algebra $CE(\mathfrak{g}, N)$ of the [[action]] of a [[Lie algebra]] or [[L-∞ algebra]] of a [[gauge group]] $G$ on space $N$ of fields is called the [[BRST complex]]. In this context \begin{itemize}% \item the generators in $N$ in degree 0 are called \textbf{fields}; \item the generators $\in \mathfrak{g}^*$ in degree $1$ are called \textbf{ghosts}; \item the generators in degree $2$ are called \textbf{ghosts of ghosts}; \item etc. \end{itemize} If $N$ is itself a [[chain complex]], then this is called a [[BV-BRST formalism|BV-BRST complex]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[∞-Lie algebra cohomology]] \item [[super L-∞ algebra]] \item \textbf{Chevalley-Eilenberg algebra} \begin{itemize}% \item [[differential graded-commutative algebra]] \item [[differential graded-commutative superalgebra]] \end{itemize} \item [[Weil algebra]] \item [[invariant polynomial]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An elementary introduction for CE-algebras of Lie algebras is at the beginning of \begin{itemize}% \item [[José de Azcárraga]], J. M. Izquierdo, J. C. Perez Bueno, \emph{An introduction to some novel applications of Lie algebra cohomology and physics} (\href{http://arxiv.org/abs/physics/9803046}{arXiv:physics/9803046}) \end{itemize} More details are in of \begin{itemize}% \item [[José de Azcárraga]], Jos\'e{} M. Izquierdo, section 6.7 of \emph{[[Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics]]} , Cambridge monographs of mathematical physics, (1995) \end{itemize} See also almost any text on [[Lie algebra cohomology]] (see the list of references there). [[!redirects Chevalley--Eilenberg algebra]] [[!redirects Chevalley–Eilenberg algebra]] [[!redirects Chevalley-Eilenberg algebras]] [[!redirects Chevalley--Eilenberg algebras]] [[!redirects Chevalley–Eilenberg algebras]] [[!redirects Chevalley-Eilenberg dg-algebra]] [[!redirects Chevalley-Eilenberg dg-algebras]] [[!redirects Chevalley-Eilenberg differential]] [[!redirects Chevalley-Eilenberg differentials]] \end{document}