\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chevalley-Eilenberg algebra in synthetic differential geometry} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions_and_setup}{Definitions and setup}\dotfill \pageref*{definitions_and_setup} \linebreak [[Urs Schreiber]]. This is something I thought about in the context of my discussion at [[schreiber:Chevalley-Eilenberg algebra]]. \hypertarget{idea}{}\section*{{Idea}}\label{idea} We give a description of the [[Chevalley?Eilenberg algebra]] of the [[Lie algebra]] of a [[Lie group]] as the [[∞-quantity]] of functions $C^\infty(\mathbf{B}G_e^{(1)})$ on the [[simplicial object|simplicial space]] of infinitesimal neighbourhoods of the identity in the sense of [[synthetic differential geometry]] in the simplicial smooth space $\mathbf{B}G$ that is the [[Lie ∞-groupoid]] incarnation of the [[delooping]] of the [[Lie group]]. The derivation is analogous to and usefully compared with how the deRham algebra of differential forms on a [[manifold]] $X$ is the [[∞-quantity]] of functions on the [[infinitesimal singular simplicial complex]] $X^{\Delta^\bullet_{diff}} \hookrightarrow \Pi(X)$ of $X$, as described at [[differential forms in synthetic differential geometry]]. We proceed entirely by using theorems and propositions from the book \begin{itemize}% \item [[Anders Kock]], \emph{Synthetic Geometry of Manifolds} (\href{http://home.imf.au.dk/kock/SGM-final.pdf}{pdf}) \end{itemize} in particular section 6.8 combined with section 4.3. We effectively show that these statements are precisely the ones needed to unwrap what the normalized [[Moore complex|Moore cochain complex]] of the [[cosimplicial algebra]] $C^\infty(\mathbf{B} G_e^{(1)})$ in the [[monoidal Dold?Kan correspondence]] is like. \hypertarget{definitions_and_setup}{}\section*{{Definitions and setup}}\label{definitions_and_setup} Let $G$ be a [[Lie group]] (by which we mean a finite dimensional Lie group). Write $\mathbf{B}G$ for the [[simplicial object|simplicial]] [[smooth space]] which in degree $k$ is the cartesian [[product]] $G^k$ with the standard face and degeneray map (see the examples at [[nerve]] for details). Let $T$ be some [[topos]] that models the axioms of [[synthetic differential geometry]] and which has a [[full and faithful functor|full and faithful]] embedding [[Diff]] $\hookrightarrow T$. Consider then $\mathbf{B}G$ as a simplicial object in $T$. As usual, we shall call objects in $T$ [[space]]s in the following. Let $G_e^{(1)} \hookrightarrow G$ be the space that is the first infinitesimal neighbourhood of the neutral element $e$ in $G$. By definition this space is ismorphic to the [[infinitesimal space]] \begin{displaymath} D(n) = \{(d_1, \cdots, d_n) \in R^n | \forall i,j : d_i d_j = 0\} \end{displaymath} for $n$ the dimension of $D$. By the [[log-exp bijection in synthetic differential geometry]] this space is canonically identified with the [[vector space]] $g := Lie(G)$ underlying the [[Lie algebra]] of $G$. Moreover, by the [[Kock-Lawvere axiom]] morphisms $f : D(n) \simeq G_e^{(1)} \to R$ are necessarily linear $f : d \mapsto f_0 \to f_1 \cdot d$, hence under the $log$--$exp$ bijection are nothing but elements in the dual vector space $g^*$. Recall that the ordinary [[Chevalley?Eilenberg algebra]] of $g$ is the [[differential graded algebra]] whose underlying graded-commutative algebra is the [[Grassmann algebra]] $\wedge^\bullet g^* = \mathbb{R} \oplus g^* \oplus g^* \wedge g^* \oplus \cdots$. So the subset of $C^\infty(G_e^{(1)})$ that vanishes at 0 is naturally isomorphic to the degree-$1$ part of the Chevalley--Eilenberg algebra. Notice now that the multiplication on the group $G$ does not restrict to a multiplication on $G_e^{(1)}$ because the sum $d_1 + d_2$ of two elements that each square to 0 is does in general not square to 0, -- $(d_1 + d_2)^2 = 2 d_1 d_2$ but only its cube $(d_1 + d_2)^3 = 0$ does. Therefore the group multiplication induces a composition \begin{displaymath} \cdot : G_e^{(1)}\times G_2^{(1)} \to G_e^{(2)} \,. \end{displaymath} Consider therefore the space of ``infinitesimal $1$-cells of $\mathbf{B}G$ whose composite is again an infinitesimal $1$-cell'', i.e. the [[pullback]] \begin{displaymath} \itexarray{ (G \times G)_e^{(1)} &\to& G_e^{(1)} \times G_e^{(1)} \\ \downarrow && \downarrow^{\cdot} \\ G_e^{(1)} &\hookrightarrow& G_e^{(2)} } \,. \end{displaymath} By item 3) of \href{http://home.imf.au.dk/kock/SGM-final.pdf#page=226}{theorem (6.8.1)} this pullback is precisely the space of elements $(x,y) \in G_e^{(1)} \times G_e^{(1)}$ such that not only $x$ and $y$ are infinitesimal neighbours of the neutral element $e$, but also of each other. By the [[Kock-Lawvere axiom]] (entirely analogous to the similar step in the derivation of simplicial [[differential forms in synthetic differential geometry]]) it should follow from this that maps $(G \times G)_e^{(1)} \to R$ that vanish on degenerate elements are in bijection with antisymmetric maps that are canonically identified with elements in $g^* \wedge_{\mathbb{R}} g^*$ (need to say this in more detail\ldots{}) Continuing in this manner (\ldots{}details for higher degrees to be filled in\ldots{}) we define the simplicial space \begin{displaymath} \mathbf{B}G_e^{(1)} := ( \cdots (G \times G)_e^{{1}} \stackrel{\to}{\stackrel{\to}{\to}} G_e^{(1)} \stackrel{\to}{\to} {*} ) \,. \end{displaymath} The \emph{normalized} Moore cochain complex $N^\bullet(C^\infty(\mathbf{B}G_e^{(1)}))$ of the cosimplicial algebra \begin{displaymath} C^\infty(\mathbf{B}G_e^{(1)}) := ( \cdots C^\infty((G \times G)_e^{{1}}) \stackrel{\leftarrow}{\stackrel{\leftarrow}{\leftarrow}} C^\infty(G_e^{(1)}) \stackrel{\leftarrow}{\leftarrow} {*} ) \end{displaymath} is in degree $k$ given by the kernel of the joint degeneracy maps. As in the discussion at [[differential forms in synthetic differential geometry]] this picks out the functions that vanish on degenerate simplices. So from the above we get \begin{displaymath} N^\bullet(C^\infty(\mathbf{B}G_e^{(1)})) = (\cdots g^* \wedge g^* \stackrel{d = \sum_i (-1)^i d_i}{\leftarrow} g^* \stackrel{0}{\leftarrow} \mathbb{R} ) \,. \end{displaymath} Recall that the differential of the [[Chevalley?Eilenberg algebra]] is on $g^*$ just the dual $[-,-]^* : g^* \to g^* \wedge g^*$ of the Lie bracket $[-,-] : g \otimes g \to g$. We need to check that this is reproduced by the differential of the Moore cochain complex, which is the alternating sum of the face maps $d = \sum_i (-1)^i d_i$. Let $f \in g^*$. Then we find for all $(x,y) \in (G \times G)_e^{(1)}$ that \begin{displaymath} (d f) (x,y) = f(p_1(x,y)) - f(x \cdot y) + f(p_2(x,y)) = f (x) + f(y) - f(x \cdot y) \,. \end{displaymath} Now we use the crucial \href{http://home.imf.au.dk/kock/SGM-final.pdf#page=227}{formula (6.8.2)} from Anders Kock's book, which says that the group product on the infinitesimal elements $x,y$ is given by \begin{displaymath} x \cdot y = x + y + \frac{1}{2}\{x,y\} \,, \end{displaymath} where the last term is the group commutator \begin{displaymath} \{x,y\}:= x \cdot y \cdot x^{-1} \cdot y^{-1} \,. \end{displaymath} So this is the term that remains in the formula for $d f$: \begin{displaymath} (d f)(x,y) = -\frac{1}{2} f(\{x,y\}) \,. \end{displaymath} On that we apply \href{http://home.imf.au.dk/kock/SGM-final.pdf#page=222}{theorem 6.6.1} of Kock's book, which says (in its third item) that under the $log$--$exp$ bijection by which we identified the infinitesimal neighbourhood $G_e^{(1)}$ (and functions on it) with the tangent space $T_e(G)$ (and linear functions on it) the group commutator maps to the Lie algebra commutator. So indeed under the identification of $f$ with an element in $g^*$ we find \begin{displaymath} d f = [-,-]^* f \,. \end{displaymath} This is indeed the differential of the [[Chevalley?Eilenberg algebra]]. (discussion needs to be completed: situation in higher degree and cup-product mapping to wedge product needs to be discussed\ldots{}) [[!redirects Chevalley-eilenberg algebra in synthetic differential geometry]] [[!redirects Chevalley-Eilenberg algebra in synthetic differential geomet]] [[!redirects Chevalley-eilenberg algebra in synthetic differential geomet]] \end{document}