\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Chromatic Homotopy Theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] This page collects links related to the lecture notes \begin{itemize}% \item [[Jacob Lurie]], \emph{Chromatic Homotopy Theory}, Lecture series 2010 (\href{http://www.math.harvard.edu/~lurie/252x.html}{web}) \end{itemize} on [[complex oriented cohomology]], the [[Adams spectral sequence]] and [[chromatic homotopy theory]] from the modern point of view of [[E-infinity geometry]]. Based on the program of \begin{itemize}% \item [[Frank Adams]], \emph{[[Stable homotopy and generalised homology]]}, 1974 \end{itemize} as nicely laid out in more detail in \begin{itemize}% \item [[Stanley Kochmann]], \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} First indications of the big picture developed here are due to \begin{itemize}% \item [[Mike Hopkins]], \emph{[[Complex oriented cohomology theories and the language of stacks]]}, 1999 \end{itemize} Via the chromatic stratification of the [[moduli stack of formal groups]] one recovers as, roughly, the second chromatic stage the [[moduli stack of elliptic curves]]. For the story in that case see \begin{itemize}% \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology]]}. \end{itemize} See also \begin{itemize}% \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, 1986/2003 \end{itemize} \textbf{Lectures} \begin{itemize}% \item Lecture 1 \emph{Introduction} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture1.pdf}{pdf}) \item Lecture 2 \emph{[[Lazard's theorem]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture2.pdf}{pdf}) \item Lecture 3 \emph{Lazard's theorem (continued)} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture3.pdf}{pdf}) \item Lecture 4 \emph{[[complex oriented cohomology theory|Complex-oriented cohomology theories]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture4.pdf}{pdf}) \item Lecture 5 \emph{[[complex bordism|Complex bordism]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture5.pdf}{pdf}) \item Lecture 6 \emph{[[MU and complex orientations]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture6.pdf}{pdf}) \item Lecture 7 \emph{[[homology of MU|The homology of MU]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture7.pdf}{pdf}) \item Lecture 8 \emph{The [[Adams spectral sequence]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture8.pdf}{pdf}) \item Lecture 9 \emph{The Adams spectral sequence for MU} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture9.pdf}{pdf}) \item Lecture 10 \emph{The proof of [[Quillen's theorem]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture10.pdf}{pdf}) \item Lecture 11 \emph{[[formal groups|Formal groups]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture11.pdf}{pdf}) \item Lecture 12 \emph{[[height of a formal group|Heights and formal groups]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture12.pdf}{pdf}) \item Lecture 13 \emph{The stratification of $\mathcal{M}_{FG}$} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture13.pdf}{pdf}) \item Lecture 14 \emph{Classification of formal groups} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture14.pdf}{pdf}) \item Lecture 15 \emph{Flat modules over $\mathcal{M}_{FG}$} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture15.pdf}{pdf}) \item Lecture 16 \emph{The [[Landweber exact functor theorem]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture16.pdf}{pdf}) \item Lecture 17 \emph{[[phantom maps|Phantom maps]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture17.pdf}{pdf}) \item Lecture 18 \emph{Even periodic cohomology theories} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture18.pdf}{pdf}) \item Lecture 19 \emph{[[Morava stabilizer groups]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture19.pdf}{pdf}) \item Lecture 20 \emph{[[Bousfield localization of spectra|Bousfield localization]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture20.pdf}{pdf}) \item Lecture 21 \emph{Lubin-Tate theory} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture21.pdf}{pdf}) \item Lecture 22 \emph{Morava E-theory and Morava K-theory} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture22.pdf}{pdf}) \item Lecture 23 \emph{The Bousfield Classes of $E(n)$ and $K(n)$} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture23.pdf}{pdf}) \item Lecture 24 \emph{Uniqueness of Morava K-theory} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture24.pdf}{pdf}) \item Lecture 25 \emph{The Nilpotence lemma} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture25.pdf}{pdf}) \item Lecture 26 \emph{Thick subcategories} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture26.pdf}{pdf}) \item Lecture 27 \emph{The periodicity theorem} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture27.pdf}{pdf}) \item Lecture 28 \emph{Telescopic localization} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture28.pdf}{pdf}) \item Lecture 29 \emph{Telescopic vs $E_n$-localization} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture29.pdf}{pdf}) \item Lecture 30 \emph{Localizations and the Adams-Novikov spectral sequence} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture30.pdf}{pdf}) \item Lecture 31 \emph{The smash product theorem} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture31.pdf}{pdf}) \item Lecture 32 \emph{The chromatic convergence theorem} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture32.pdf}{pdf}) \item Lecture 33 \emph{Complex bordism and $E(n)$-localization} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture33.pdf}{pdf}) \item Lecture 34 \emph{Monochromatic layers} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture34.pdf}{pdf}) \item Lecture 35 \emph{The image of $J$} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture35.pdf}{pdf}) \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{lecture_2_lazards_theorem}{Lecture 2 \emph{Lazard's theorem}}\dotfill \pageref*{lecture_2_lazards_theorem} \linebreak \noindent\hyperlink{lecture_3_lazards_theorem_continued}{Lecture 3 \emph{Lazard's theorem (continued)}}\dotfill \pageref*{lecture_3_lazards_theorem_continued} \linebreak \noindent\hyperlink{lecture_4_complexoriented_cohomology_theories}{Lecture 4 \emph{Complex-oriented cohomology theories}}\dotfill \pageref*{lecture_4_complexoriented_cohomology_theories} \linebreak \noindent\hyperlink{lecture_5_complex_bordism}{Lecture 5 \emph{Complex bordism}}\dotfill \pageref*{lecture_5_complex_bordism} \linebreak \noindent\hyperlink{lecture_6_mu_and_complex_orientations}{Lecture 6 \emph{MU and complex orientations}}\dotfill \pageref*{lecture_6_mu_and_complex_orientations} \linebreak \noindent\hyperlink{lecture_7_the_homology_of_mu}{Lecture 7 \emph{The homology of MU}}\dotfill \pageref*{lecture_7_the_homology_of_mu} \linebreak \noindent\hyperlink{lecture_8_the_adams_spectral_sequence}{Lecture 8 \emph{The Adams spectral sequence}}\dotfill \pageref*{lecture_8_the_adams_spectral_sequence} \linebreak \noindent\hyperlink{lecture_9_the_adams_spectral_sequence_for_mu}{Lecture 9 \emph{The Adams spectral sequence for MU}}\dotfill \pageref*{lecture_9_the_adams_spectral_sequence_for_mu} \linebreak \noindent\hyperlink{lecture_10_the_proof_of_quillens_theorem}{Lecture 10 \emph{The proof of Quillen's theorem}}\dotfill \pageref*{lecture_10_the_proof_of_quillens_theorem} \linebreak \noindent\hyperlink{lecture_11_formal_groups}{Lecture 11 \emph{Formal groups}}\dotfill \pageref*{lecture_11_formal_groups} \linebreak \noindent\hyperlink{lecture_12_heights_and_formal_groups}{Lecture 12 \emph{Heights and formal groups}}\dotfill \pageref*{lecture_12_heights_and_formal_groups} \linebreak \noindent\hyperlink{lecture_13_the_stratification_of_}{Lecture 13 \emph{The stratification of $\mathcal{M}_{FG}$}}\dotfill \pageref*{lecture_13_the_stratification_of_} \linebreak \noindent\hyperlink{lecture_14_classification_of_formal_groups}{Lecture 14 \emph{Classification of formal groups}}\dotfill \pageref*{lecture_14_classification_of_formal_groups} \linebreak \noindent\hyperlink{lecture_15_flat_modules_over_}{Lecture 15 \emph{Flat modules over $\mathcal{M}_{FG}$}}\dotfill \pageref*{lecture_15_flat_modules_over_} \linebreak \noindent\hyperlink{lecture_16_the_landweber_exact_functor_theorem}{Lecture 16 \emph{The Landweber exact functor theorem}}\dotfill \pageref*{lecture_16_the_landweber_exact_functor_theorem} \linebreak \noindent\hyperlink{lecture_17_phantom_maps}{Lecture 17 \emph{Phantom maps}}\dotfill \pageref*{lecture_17_phantom_maps} \linebreak \noindent\hyperlink{lecture_18_even_periodic_cohomology_theories}{Lecture 18 \emph{Even periodic cohomology theories}}\dotfill \pageref*{lecture_18_even_periodic_cohomology_theories} \linebreak \noindent\hyperlink{lecture_19_morava_stabilizer_groups}{Lecture 19 \emph{Morava stabilizer groups}}\dotfill \pageref*{lecture_19_morava_stabilizer_groups} \linebreak \noindent\hyperlink{lecture_20_bousfield_localization}{Lecture 20 \emph{Bousfield localization}}\dotfill \pageref*{lecture_20_bousfield_localization} \linebreak \noindent\hyperlink{lecture_21_lubintate_theory}{Lecture 21 \emph{Lubin-Tate theory}}\dotfill \pageref*{lecture_21_lubintate_theory} \linebreak \noindent\hyperlink{lecture_22_morava_etheory_and_morava_ktheory}{Lecture 22 \emph{Morava E-theory and Morava K-theory}}\dotfill \pageref*{lecture_22_morava_etheory_and_morava_ktheory} \linebreak \noindent\hyperlink{lecture_23_the_bousfield_classes_of__and_}{Lecture 23 \emph{The Bousfield Classes of $E(n)$ and $K(n)$}}\dotfill \pageref*{lecture_23_the_bousfield_classes_of__and_} \linebreak \noindent\hyperlink{lecture_24_uniqueness_of_morava_ktheory}{Lecture 24 \emph{Uniqueness of Morava K-theory}}\dotfill \pageref*{lecture_24_uniqueness_of_morava_ktheory} \linebreak \noindent\hyperlink{lecture_25_the_nilpotence_lemma}{Lecture 25 \emph{The Nilpotence lemma}}\dotfill \pageref*{lecture_25_the_nilpotence_lemma} \linebreak \noindent\hyperlink{lecture_26_thick_subcategories}{Lecture 26 \emph{Thick subcategories}}\dotfill \pageref*{lecture_26_thick_subcategories} \linebreak \noindent\hyperlink{lecture_27_the_periodicity_theorem}{Lecture 27 \emph{The periodicity theorem}}\dotfill \pageref*{lecture_27_the_periodicity_theorem} \linebreak \noindent\hyperlink{lecture_28_telescopic_localization}{Lecture 28 \emph{Telescopic localization}}\dotfill \pageref*{lecture_28_telescopic_localization} \linebreak \noindent\hyperlink{lecture_29_telescopic_vs_localization}{Lecture 29 \emph{Telescopic vs $E_n$-localization}}\dotfill \pageref*{lecture_29_telescopic_vs_localization} \linebreak \noindent\hyperlink{lecture_30_localizations_and_the_adamsnovikov_spectral_sequence}{Lecture 30 \emph{Localizations and the Adams-Novikov spectral sequence}}\dotfill \pageref*{lecture_30_localizations_and_the_adamsnovikov_spectral_sequence} \linebreak \noindent\hyperlink{lecture_31_the_smash_product_theorem}{Lecture 31 \emph{The smash product theorem}}\dotfill \pageref*{lecture_31_the_smash_product_theorem} \linebreak \noindent\hyperlink{lecture_32_the_chromatic_convergence_theorem}{Lecture 32 \emph{The chromatic convergence theorem}}\dotfill \pageref*{lecture_32_the_chromatic_convergence_theorem} \linebreak \noindent\hyperlink{lecture_33_complex_bordism_and_localization}{Lecture 33 \emph{Complex bordism and $E(n)$-localization}}\dotfill \pageref*{lecture_33_complex_bordism_and_localization} \linebreak \noindent\hyperlink{lecture_34_monochromatic_layers}{Lecture 34 \emph{Monochromatic layers}}\dotfill \pageref*{lecture_34_monochromatic_layers} \linebreak \noindent\hyperlink{lecture_35_the_image_of_}{Lecture 35 \emph{The image of $J$}}\dotfill \pageref*{lecture_35_the_image_of_} \linebreak \hypertarget{lecture_2_lazards_theorem}{}\subsection*{{Lecture 2 \emph{Lazard's theorem}}}\label{lecture_2_lazards_theorem} \begin{itemize}% \item [[Lazard ring]] \item [[Lazard's theorem]] \end{itemize} \hypertarget{lecture_3_lazards_theorem_continued}{}\subsection*{{Lecture 3 \emph{Lazard's theorem (continued)}}}\label{lecture_3_lazards_theorem_continued} \begin{itemize}% \item [[Lazard's theorem]] \end{itemize} \hypertarget{lecture_4_complexoriented_cohomology_theories}{}\subsection*{{Lecture 4 \emph{Complex-oriented cohomology theories}}}\label{lecture_4_complexoriented_cohomology_theories} \begin{itemize}% \item [[complex oriented cohomology theory]] \item [[splitting principle]] \item [[generalized Chern classes]] \end{itemize} \hypertarget{lecture_5_complex_bordism}{}\subsection*{{Lecture 5 \emph{Complex bordism}}}\label{lecture_5_complex_bordism} \begin{itemize}% \item [[complex cobordism cohomology theory]], [[MU]] \end{itemize} \hypertarget{lecture_6_mu_and_complex_orientations}{}\subsection*{{Lecture 6 \emph{MU and complex orientations}}}\label{lecture_6_mu_and_complex_orientations} \begin{itemize}% \item [[universal complex orientation in MU]] \end{itemize} \hypertarget{lecture_7_the_homology_of_mu}{}\subsection*{{Lecture 7 \emph{The homology of MU}}}\label{lecture_7_the_homology_of_mu} \begin{itemize}% \item [[Boardman homomorphism]] \item [[homology of MU]] \end{itemize} \hypertarget{lecture_8_the_adams_spectral_sequence}{}\subsection*{{Lecture 8 \emph{The Adams spectral sequence}}}\label{lecture_8_the_adams_spectral_sequence} \begin{itemize}% \item [[Adams resolution]] \item [[Adams spectral sequence]] \end{itemize} \hypertarget{lecture_9_the_adams_spectral_sequence_for_mu}{}\subsection*{{Lecture 9 \emph{The Adams spectral sequence for MU}}}\label{lecture_9_the_adams_spectral_sequence_for_mu} \begin{itemize}% \item [[Adams-Novikov spectral sequence]] \end{itemize} \hypertarget{lecture_10_the_proof_of_quillens_theorem}{}\subsection*{{Lecture 10 \emph{The proof of Quillen's theorem}}}\label{lecture_10_the_proof_of_quillens_theorem} \begin{itemize}% \item [[Quillen's theorem on MU]] \end{itemize} \hypertarget{lecture_11_formal_groups}{}\subsection*{{Lecture 11 \emph{Formal groups}}}\label{lecture_11_formal_groups} \begin{itemize}% \item [[formal group]] \end{itemize} \hypertarget{lecture_12_heights_and_formal_groups}{}\subsection*{{Lecture 12 \emph{Heights and formal groups}}}\label{lecture_12_heights_and_formal_groups} \begin{itemize}% \item [[height of a formal group]] \end{itemize} \hypertarget{lecture_13_the_stratification_of_}{}\subsection*{{Lecture 13 \emph{The stratification of $\mathcal{M}_{FG}$}}}\label{lecture_13_the_stratification_of_} \begin{itemize}% \item [[chromatic filtration]] \end{itemize} \hypertarget{lecture_14_classification_of_formal_groups}{}\subsection*{{Lecture 14 \emph{Classification of formal groups}}}\label{lecture_14_classification_of_formal_groups} \begin{itemize}% \item [[moduli stack of formal groups]] \end{itemize} \hypertarget{lecture_15_flat_modules_over_}{}\subsection*{{Lecture 15 \emph{Flat modules over $\mathcal{M}_{FG}$}}}\label{lecture_15_flat_modules_over_} \begin{itemize}% \item [[quasicoherent sheaf]], [[flat module]], [[exact functor]] \item [[Landweber exactness]] \end{itemize} \hypertarget{lecture_16_the_landweber_exact_functor_theorem}{}\subsection*{{Lecture 16 \emph{The Landweber exact functor theorem}}}\label{lecture_16_the_landweber_exact_functor_theorem} \begin{itemize}% \item [[Landweber exact functor theorem]] \end{itemize} \hypertarget{lecture_17_phantom_maps}{}\subsection*{{Lecture 17 \emph{Phantom maps}}}\label{lecture_17_phantom_maps} \begin{itemize}% \item [[Brown representability theorem]], [[Landweber exact spectrum]] \item [[phantom map]] \end{itemize} \hypertarget{lecture_18_even_periodic_cohomology_theories}{}\subsection*{{Lecture 18 \emph{Even periodic cohomology theories}}}\label{lecture_18_even_periodic_cohomology_theories} \begin{itemize}% \item [[periodic cohomology theory]] \item [[periodic ring spectrum]] \end{itemize} \hypertarget{lecture_19_morava_stabilizer_groups}{}\subsection*{{Lecture 19 \emph{Morava stabilizer groups}}}\label{lecture_19_morava_stabilizer_groups} \begin{itemize}% \item [[Morava stabilizer group]] \end{itemize} \hypertarget{lecture_20_bousfield_localization}{}\subsection*{{Lecture 20 \emph{Bousfield localization}}}\label{lecture_20_bousfield_localization} \begin{itemize}% \item [[Bousfield localization]] \item [[Bousfield localization of spectra]] \item [[p-localization]] \end{itemize} \hypertarget{lecture_21_lubintate_theory}{}\subsection*{{Lecture 21 \emph{Lubin-Tate theory}}}\label{lecture_21_lubintate_theory} \begin{itemize}% \item [[Lubin-Tate formal group]] \item [[Lubin-Tate theory]] \end{itemize} \hypertarget{lecture_22_morava_etheory_and_morava_ktheory}{}\subsection*{{Lecture 22 \emph{Morava E-theory and Morava K-theory}}}\label{lecture_22_morava_etheory_and_morava_ktheory} \begin{itemize}% \item [[Morava K-theory]] \item [[Morava E-theory]] \end{itemize} \hypertarget{lecture_23_the_bousfield_classes_of__and_}{}\subsection*{{Lecture 23 \emph{The Bousfield Classes of $E(n)$ and $K(n)$}}}\label{lecture_23_the_bousfield_classes_of__and_} \begin{itemize}% \item [[Bousfield equivalence]] \item [[smash product theorem]] \end{itemize} \hypertarget{lecture_24_uniqueness_of_morava_ktheory}{}\subsection*{{Lecture 24 \emph{Uniqueness of Morava K-theory}}}\label{lecture_24_uniqueness_of_morava_ktheory} \begin{itemize}% \item [[∞-field]] \end{itemize} \hypertarget{lecture_25_the_nilpotence_lemma}{}\subsection*{{Lecture 25 \emph{The Nilpotence lemma}}}\label{lecture_25_the_nilpotence_lemma} \begin{itemize}% \item [[nilpotence lemma]] \end{itemize} \hypertarget{lecture_26_thick_subcategories}{}\subsection*{{Lecture 26 \emph{Thick subcategories}}}\label{lecture_26_thick_subcategories} \begin{itemize}% \item [[thick subcategory]] \end{itemize} \hypertarget{lecture_27_the_periodicity_theorem}{}\subsection*{{Lecture 27 \emph{The periodicity theorem}}}\label{lecture_27_the_periodicity_theorem} \begin{itemize}% \item [[periodicity theorem]] \end{itemize} \hypertarget{lecture_28_telescopic_localization}{}\subsection*{{Lecture 28 \emph{Telescopic localization}}}\label{lecture_28_telescopic_localization} \begin{itemize}% \item [[telescopic localization]] \end{itemize} \hypertarget{lecture_29_telescopic_vs_localization}{}\subsection*{{Lecture 29 \emph{Telescopic vs $E_n$-localization}}}\label{lecture_29_telescopic_vs_localization} \begin{itemize}% \item [[smashing localization]] \item [[chromatic tower]] \end{itemize} \hypertarget{lecture_30_localizations_and_the_adamsnovikov_spectral_sequence}{}\subsection*{{Lecture 30 \emph{Localizations and the Adams-Novikov spectral sequence}}}\label{lecture_30_localizations_and_the_adamsnovikov_spectral_sequence} \begin{itemize}% \item [[Adams-Novikov spectral sequence]] \end{itemize} \hypertarget{lecture_31_the_smash_product_theorem}{}\subsection*{{Lecture 31 \emph{The smash product theorem}}}\label{lecture_31_the_smash_product_theorem} \begin{itemize}% \item [[smash product theorem]] \end{itemize} \hypertarget{lecture_32_the_chromatic_convergence_theorem}{}\subsection*{{Lecture 32 \emph{The chromatic convergence theorem}}}\label{lecture_32_the_chromatic_convergence_theorem} \begin{itemize}% \item [[chromatic convergence theorem]] \end{itemize} \hypertarget{lecture_33_complex_bordism_and_localization}{}\subsection*{{Lecture 33 \emph{Complex bordism and $E(n)$-localization}}}\label{lecture_33_complex_bordism_and_localization} \hypertarget{lecture_34_monochromatic_layers}{}\subsection*{{Lecture 34 \emph{Monochromatic layers}}}\label{lecture_34_monochromatic_layers} \begin{itemize}% \item [[monochromatic layer]] \end{itemize} \hypertarget{lecture_35_the_image_of_}{}\subsection*{{Lecture 35 \emph{The image of $J$}}}\label{lecture_35_the_image_of_} \begin{itemize}% \item [[J-homomorphism]] \item [[Adams operation]] \end{itemize} category: reference \end{document}