\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{CocommCoalg} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{colimits}{Colimits}\dotfill \pageref*{colimits} \linebreak \noindent\hyperlink{local_presentability}{Local presentability}\dotfill \pageref*{local_presentability} \linebreak \noindent\hyperlink{totality_and_completeness}{Totality and completeness}\dotfill \pageref*{totality_and_completeness} \linebreak \noindent\hyperlink{cartesian_closure}{Cartesian closure}\dotfill \pageref*{cartesian_closure} \linebreak \noindent\hyperlink{comonadicity_over_}{Comonadicity over $R Mod$}\dotfill \pageref*{comonadicity_over_} \linebreak \noindent\hyperlink{extensivity}{Extensivity}\dotfill \pageref*{extensivity} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak This page describes some nice properties of the [[category]] $R Cocomm Coalg$ of [[cocommutative coalgebra|cocommutative]] [[coalgebras]] over a [[ground ring]] $R$, in particular details of the proof that it is a [[complete category|complete]], [[cocomplete category|cocomplete]], [[lextensive category|lextensive]], [[cartesian closed category]] with a [[generating set]]. In the sequel, we will simply say ``coalgebra'', although we really mean \emph{cocommutative} (coassociative, counital) coalgebra. \hypertarget{colimits}{}\subsection*{{Colimits}}\label{colimits} Colimits in $R Cocomm Coalg$ are created (reflected) by the forgetful functor $U: R Cocomm Coalg \to R Mod$. As the codomain is cocomplete, so is the domain. Thus for example, the coproduct of coalgebras $C, D$ is the direct sum module $C \oplus D$ equipped with the evident comultiplication $C \oplus D \to (C \otimes C) \oplus (D \otimes D) \hookrightarrow (C \oplus D) \otimes (C \oplus D)$. It is perhaps well to point out explicitly that if $f: C \to D$ is a coalgebra map, then the [[image]] $f(C)$ in $R Mod$ inherits a coalgebra structure from $D$ and provides the image in $R Cocomm Coalg$. This is an easy consequence of the fact that $f(C \otimes C) = f(C) \otimes f(C)$ as submodules of $D \otimes D$. \hypertarget{local_presentability}{}\subsection*{{Local presentability}}\label{local_presentability} Most of the nice properties can be derived as consequences of the [[locally presentable category|local presentability]] of $R Cocomm Coalg$. For this we refer to the paper by \hyperlink{Porst}{Porst}. In the case where $R$ is a [[field]] $k$, the category $k Cocomm Coalg$ is locally finitely presentable. The finitely presentable objects of $k Cocomm Coalg$ are those coalgebras that are [[finite-dimensional vector space|finite-dimensional]] as [[vector spaces]]. The first step towards establishing locally finite presentability is the fundamental theorem of coalgebras, which guarantees that every coalgebra is a filtered colimit of finite-dimensional coalgebras: \begin{theorem} \label{}\hypertarget{}{} Every coalgebra $C$ is the union of its finite-dimensional subcoalgebras, i.e., is the [[directed colimit]] of the system of finite-dimensional subcoalgebras of $C$ and inclusion maps between them. \end{theorem} (For the nonce, we define ``subcoalgebra'' of $C$ to mean vector subspace $i: V \hookrightarrow C$ such that the restricted comultiplication $\delta_C \circ i$ is contained in the subspace $V \otimes V$ of $C \otimes C$. Later we will see that subcoalgebras are actually the same thing as [[subobjects]] in $k Cocomm Coalg$ in the sense of equivalence classes of [[monomorphisms]].) \begin{prop} \label{}\hypertarget{}{} Every finite-dimensional coalgebra $C$ is finitely presentable, i.e., $\hom(C, -): k Cocomm Coalg \to Set$ preserves filtered colimits. \end{prop} \begin{proof} If $D = colim_j D_j$ is a directed colimit, then the image of a coalgebra map $f: C \to D$ is a finite-dimensional subcoalgebra inclusion $f(C) \to D$ which, as a finitely presentable vector space, is included in one of the components $D_j \to D$ of the colimit cone; this inclusion is a subcoalgebra inclusion. \end{proof} It follows easily from these results and cocompleteness of $k Cocomm Coalg$ that $k Cocomm Coalg$ is locally finitely presentable. As a result we have a [[Gabriel-Ulmer duality|Gabriel-Ulmer]] equivalence \begin{displaymath} k Cocomm Coalg \simeq Lex(k Cocomm Coalg_{fd}^{op}, Set) \end{displaymath} where the category of finite-dimensional coalgebras is dual to the category of finite-dimensional algebras, so that also \begin{displaymath} k Cocomm Coalg \simeq Lex(Comm Alg_{fd}, Set). \end{displaymath} Naturally, choosing a representative of each isomorphism class of finite-dimensional coalgebras, we obtain a generating set of $k Cocomm Coalg$. \hypertarget{totality_and_completeness}{}\subsection*{{Totality and completeness}}\label{totality_and_completeness} As is the case for any locally presentable category, $R Cocomm Coalg$ is not only cocomplete but is a [[total category|totally cocomplete category]] and is (therefore) [[complete category|complete]] as well. The construction of [[limits]] can be described explicitly. The [[equalizer]] of two coalgebra maps $f, g: C \stackrel{\to}{\to} D$ is the largest subcoalgebra contained in the $R Mod$ equalizer (the latter coincides with the equalizer as computed in [[Set]]). This can be described even more explicitly in [[Sweedler notation]]: the equalizer of $f, g$ is the set \begin{displaymath} E = \{c \in C: c_{(1)} \otimes f(c_{(2)}) \otimes c_{(3)} = c_{(1)} \otimes g(c_{(2)}) \otimes c_{(3)}\} \end{displaymath} with the unique structure of coalgebra that makes it a subcoalgebra of $C$. Assuming the construction of [[cofree coalgebra|cofree cocommutative coalgebra]]s, viz. the right adjoint $K: R Mod \to R Cocomm Coalg$ to the forgetful functor $U: R Cocomm Coalg \to R Mod$ (which we also touch on below), the [[product]] of a family of coalgebras $C_i$ can be described as follows. Consider the product $\prod_i C_i$ taken in $R Mod$, and let $p: U K(\prod_i C_i) \to \prod_i C_i$ be the component of the counit of the adjunction $U \dashv K$ at that product. Then the product $C$ of the $C_i$ taken in $R Cocomm Coalg$ is the largest subcoalgebra $j: C \hookrightarrow K(\prod_i C_i)$ such that each composite $\pi_i p j: C \to C_i$ is a coalgebra map. For a proof, see the \hyperlink{Agore}{article} by Agore. \hypertarget{cartesian_closure}{}\subsection*{{Cartesian closure}}\label{cartesian_closure} The [[cartesian product]] of two coalgebras $C, D$ is given by $C \otimes D$ with the evident coalgebra structure. The functor $C \otimes -: R Cocomm Coalg \to R Cocomm Coalg$ is a [[cocontinuous functor]], since colimits are reflected from $R Mod$ and $C \otimes -: R Mod \to R Mod$ is cocontinuous there. For locally presentable or more generally total categories $\mathbf{C}$, cocontinuity of a functor $F: \mathbf{C} \to \mathbf{C}$ is enough to guarantee that $F$ has a right adjoint. It follows that $R Cocomm Coalg$ is cartesian closed. \hypertarget{comonadicity_over_}{}\subsection*{{Comonadicity over $R Mod$}}\label{comonadicity_over_} Again, since $U: R Cocomm Coalg \to R Mod$ is cocontinuous and $R Cocomm Coalg$ is locally presentable, $U$ has a right adjoint $K$. This is described more explicitly at [[cofree coalgebra|cofree cocommutative coalgebra]]. The comonadicity of $U$ is proven in the \hyperlink{Barr}{article} by Barr, section 4. \hypertarget{extensivity}{}\subsection*{{Extensivity}}\label{extensivity} We will show that $k Cocomm Coalg$ is a [[lextensive category]]. \begin{prop} \label{}\hypertarget{}{} Coproducts of coalgebras are disjoint. \end{prop} \begin{proof} The coproduct of coalgebras $C, D$ is $C \oplus D$, and the pullback of the two coalgebra inclusions $i_C: C \to C \oplus D, i_D: D \to C \oplus D$ is the coalgebra equalizer of the two maps \begin{displaymath} \itexarray{ & & C & & \\ & _\mathllap{\pi_C} \nearrow & & \searrow _\mathrlap{i_C} \\ C \otimes D & & & & C \oplus D \\ & _\mathllap{\pi_D} \searrow & & \nearrow _\mathrlap{i_D} \\ & & D & & } \end{displaymath} This coalgebra equalizer is constructed as the largest subcoalgebra of $C \otimes D$ contained in the $k Vect$ equalizer. But the $k Vect$ equalizer is easily seen to be $0$ (cf. the fact that $k Vect$ coproducts are themselves disjoint), and so the coalgebra equalizer must be $0$ as well, concluding the proof. \end{proof} \begin{prop} \label{}\hypertarget{}{} Coproducts of coalgebras are stable under pullback. \end{prop} \begin{proof} Consider the following diagram: \begin{displaymath} \itexarray{ & & F & & \\ & & \downarrow j & & \\ & & X & & \\ & & \downarrow f & & \\ C & \underset{i_C}{\to} & C \oplus D & \underset{i_D}{\leftarrow} & D } \end{displaymath} where $f$ is an arbitrary coalgebra map and $j: F \hookrightarrow X$ is a finite-dimensional subcoalgebra inclusion. We will show that the pullback of the coproduct diagram along $f \circ j$ is a coproduct decomposition of $F$. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Michael Barr, \href{http://www.math.mcgill.ca/barr/ftp/pdffiles/coalgebra.pdf}{Coalgebras over a commutative ring}, J. Alg. 32 (1974), 600--610. \end{itemize} \begin{itemize}% \item Hans-Eberhard Porst, \href{http://dml.cz/bitstream/handle/10338.dmlcz/108017/ArchMathRetro_042-2006-4_7.pdf}{On corings and comodules}, Archivum Mathematicum (2006), No. 4, 419-425. \end{itemize} \begin{itemize}% \item Ana L. Agore, \emph{Limits of Coalgebras, Bialgebras and Hopf Algebras}, arxiv.org/pdf/1003.0318, 2010. (\href{http://arxiv.org/pdf/1003.0318.pdf}{pdf}) \end{itemize} [[!redirects Cocomm Coalg]] [[!redirects CommCoalg]] [[!redirects Comm Coalg]] [[!redirects category of cocommutative coalgebras]] [[!redirects category of commutative coalgebras]] category: category \end{document}