\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Complex cobordism and stable homotopy groups of spheres} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] This entry collected pointers related to the book \begin{itemize}% \item [[Doug Ravenel]] \emph{Complex cobordism and stable homotopy groups of spheres} 1986/2003 (\href{http://www.math.rochester.edu/people/faculty/doug/mu.html}{web}) \end{itemize} on [[stable homotopy theory]] in general and in particular the computation of the [[homotopy groups of spheres]] via the [[Adams-Novikov spectral sequence]] and its use of [[complex cobordism cohomology theory]]. \begin{quote}% My initial inclination was to call this book [[The Music of the Spheres]], but I was dissuaded from doing so by my diligent publisher, who is ever mindful of the sensibilities of librarians. (preface to the first edition) \end{quote} See also \begin{itemize}% \item [[Frank Adams]], \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Mike Hopkins]], \emph{[[Complex oriented cohomology theories and the language of stacks]]}, 1999 \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, 2010 \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{chapter_1_an_introduction_to_the_homotopy_groups_of_spheres}{Chapter 1. An introduction to the Homotopy Groups of Spheres}\dotfill \pageref*{chapter_1_an_introduction_to_the_homotopy_groups_of_spheres} \linebreak \noindent\hyperlink{1_classical_theorems_old_and_new}{1. Classical theorems Old and New}\dotfill \pageref*{1_classical_theorems_old_and_new} \linebreak \noindent\hyperlink{2_methods_of_computing_}{2. Methods of computing $\pi_\ast(S^n)$}\dotfill \pageref*{2_methods_of_computing_} \linebreak \noindent\hyperlink{3_the_adamsnovikov_term_formal_group_laws_and_the_greek_letter_construction}{3. The Adams-Novikov $E_2$-term, Formal Group Laws, and the Greek Letter Construction}\dotfill \pageref*{3_the_adamsnovikov_term_formal_group_laws_and_the_greek_letter_construction} \linebreak \noindent\hyperlink{4_more_formal_group_law_theory_moravas_point_of_view_and_the_chromatic_spectral_sequence}{4. More formal group law theory, Morava's point of view, and the Chromatic Spectral Sequence}\dotfill \pageref*{4_more_formal_group_law_theory_moravas_point_of_view_and_the_chromatic_spectral_sequence} \linebreak \noindent\hyperlink{5_unstable_homotopy_groups_and_the_ehp_spectral_sequence}{5. Unstable homotopy groups and the EHP spectral sequence}\dotfill \pageref*{5_unstable_homotopy_groups_and_the_ehp_spectral_sequence} \linebreak \noindent\hyperlink{chapter_2_setting_up_the_adams_spectral_sequence}{Chapter 2. Setting up the Adams Spectral sequence}\dotfill \pageref*{chapter_2_setting_up_the_adams_spectral_sequence} \linebreak \noindent\hyperlink{1_the_classical_adams_spectral_sequence}{1. The classical Adams spectral sequence}\dotfill \pageref*{1_the_classical_adams_spectral_sequence} \linebreak \noindent\hyperlink{2_the_adams_spectral_sequence_based_on_a_generalized_homology_theory}{2. The Adams spectral sequence based on a generalized homology theory}\dotfill \pageref*{2_the_adams_spectral_sequence_based_on_a_generalized_homology_theory} \linebreak \noindent\hyperlink{3_the_smash_product_pairing_and_the_generalized_connecting_homomorphism}{3. The smash product pairing and the Generalized connecting homomorphism}\dotfill \pageref*{3_the_smash_product_pairing_and_the_generalized_connecting_homomorphism} \linebreak \noindent\hyperlink{chapter_3_the_classical_adams_spectral_sequence}{Chapter 3. The Classical Adams Spectral Sequence}\dotfill \pageref*{chapter_3_the_classical_adams_spectral_sequence} \linebreak \noindent\hyperlink{1_the_steenrod_algebra_and_some_easy_calculuation}{1. The Steenrod algebra and some easy calculuation}\dotfill \pageref*{1_the_steenrod_algebra_and_some_easy_calculuation} \linebreak \noindent\hyperlink{2_the_may_spectral_sequence}{2. The May spectral sequence}\dotfill \pageref*{2_the_may_spectral_sequence} \linebreak \noindent\hyperlink{3_the_lambda_algebra}{3. The Lambda Algebra}\dotfill \pageref*{3_the_lambda_algebra} \linebreak \noindent\hyperlink{4_some_general_properties_of_}{4. Some general properties of $Ext$}\dotfill \pageref*{4_some_general_properties_of_} \linebreak \noindent\hyperlink{5_survey_and_further_reading}{5. Survey and further reading}\dotfill \pageref*{5_survey_and_further_reading} \linebreak \noindent\hyperlink{chapter_4_theory_and_the_adamsnovikov_spectral_sequence}{Chapter 4. $B P$-Theory and the Adams-Novikov Spectral Sequence}\dotfill \pageref*{chapter_4_theory_and_the_adamsnovikov_spectral_sequence} \linebreak \noindent\hyperlink{1_quillens_theorem_and_the_structure_of_}{1. Quillen's theorem and the structure of $BP_\bullet(BP)$}\dotfill \pageref*{1_quillens_theorem_and_the_structure_of_} \linebreak \noindent\hyperlink{2_a_survey_of_theory}{2. A survey of $B P$-theory}\dotfill \pageref*{2_a_survey_of_theory} \linebreak \noindent\hyperlink{3_some_calculations_in_}{3. Some calculations in $B P_\bullet(B P)$}\dotfill \pageref*{3_some_calculations_in_} \linebreak \noindent\hyperlink{4_beginning_calculations_with_the_adamsnovikov_spectral_sequence}{4. Beginning calculations with the Adams-Novikov Spectral Sequence}\dotfill \pageref*{4_beginning_calculations_with_the_adamsnovikov_spectral_sequence} \linebreak \noindent\hyperlink{chapter_5_the_chromatic_spectral_sequence}{Chapter 5. The Chromatic Spectral Sequence}\dotfill \pageref*{chapter_5_the_chromatic_spectral_sequence} \linebreak \noindent\hyperlink{1_the_algebraic_construction}{1. The algebraic construction}\dotfill \pageref*{1_the_algebraic_construction} \linebreak \noindent\hyperlink{2__and_hopf_invariant_one}{2. $Ext^1(B P_\bullet/I_n)$ and Hopf Invariant One}\dotfill \pageref*{2__and_hopf_invariant_one} \linebreak \noindent\hyperlink{3__and_the_homomorphism}{3. $Ext(M^1)$ and the $J$-Homomorphism}\dotfill \pageref*{3__and_the_homomorphism} \linebreak \noindent\hyperlink{4__and_the_thom_reduction}{4. $Ext^2$ and the Thom Reduction}\dotfill \pageref*{4__and_the_thom_reduction} \linebreak \noindent\hyperlink{5_periodic_families_in_}{5. Periodic families in $Ext^2$}\dotfill \pageref*{5_periodic_families_in_} \linebreak \noindent\hyperlink{6_elements_in__and_beyond}{6. Elements in $Ext^3$ and Beyond}\dotfill \pageref*{6_elements_in__and_beyond} \linebreak \noindent\hyperlink{chapter_6_morava_stabilizer_algebras}{Chapter 6. Morava Stabilizer Algebras}\dotfill \pageref*{chapter_6_morava_stabilizer_algebras} \linebreak \noindent\hyperlink{chapter_7_computing_stable_homotopy_groups_with_the_adamsnovikov_spectral_sequence}{Chapter 7. Computing Stable Homotopy Groups with the Adams-Novikov Spectral Sequence}\dotfill \pageref*{chapter_7_computing_stable_homotopy_groups_with_the_adamsnovikov_spectral_sequence} \linebreak \noindent\hyperlink{appendix_1_hopf_algebras_and_hopf_algebroids}{Appendix 1. Hopf Algebras and Hopf Algebroids}\dotfill \pageref*{appendix_1_hopf_algebras_and_hopf_algebroids} \linebreak \noindent\hyperlink{1_basic_definitions}{1. Basic definitions}\dotfill \pageref*{1_basic_definitions} \linebreak \noindent\hyperlink{2_homological_algebra}{2. Homological algebra}\dotfill \pageref*{2_homological_algebra} \linebreak \noindent\hyperlink{3_some_spectral_sequences}{3. Some spectral sequences}\dotfill \pageref*{3_some_spectral_sequences} \linebreak \noindent\hyperlink{4_massey_products}{4. Massey products}\dotfill \pageref*{4_massey_products} \linebreak \noindent\hyperlink{5_algebraic_steenrod_operations}{5. Algebraic Steenrod operations}\dotfill \pageref*{5_algebraic_steenrod_operations} \linebreak \noindent\hyperlink{appendix_2_formal_group_laws}{Appendix 2. Formal Group Laws}\dotfill \pageref*{appendix_2_formal_group_laws} \linebreak \noindent\hyperlink{appendix_3_table_of_homotopy_groups_of_spheres}{Appendix 3. Table of homotopy groups of spheres}\dotfill \pageref*{appendix_3_table_of_homotopy_groups_of_spheres} \linebreak \hypertarget{chapter_1_an_introduction_to_the_homotopy_groups_of_spheres}{}\subsection*{{Chapter 1. An introduction to the Homotopy Groups of Spheres}}\label{chapter_1_an_introduction_to_the_homotopy_groups_of_spheres} \hypertarget{1_classical_theorems_old_and_new}{}\subsubsection*{{1. Classical theorems Old and New}}\label{1_classical_theorems_old_and_new} \begin{itemize}% \item [[homotopy group]] \item [[Hurewicz theorem]] \item [[suspension]], [[reduced suspension]] \item [[Freudenthal suspension theorem]] \item [[stable homotopy groups of spheres]] \item [[Hopf fibration]] \item [[Serre finiteness theorem]] \item [[Nishida nilpotence theorem]] \item [[Bott periodicity theorem]] \item [[J-homomorphism]] \item [[Adams conjecture]] \end{itemize} \hypertarget{2_methods_of_computing_}{}\subsubsection*{{2. Methods of computing $\pi_\ast(S^n)$}}\label{2_methods_of_computing_} \begin{itemize}% \item [[Postnikov tower]] \item [[Serre spectral sequence]] \item [[Adams spectral sequence]] \item [[Steenrod algebra]] \item [[parallelizable sphere]] \item [[Hopf invariant one theorem]] \item [[complex cobordism cohomology]] \item [[cobordism ring]] \item [[Adams-Novikov spectral sequence]] \end{itemize} \hypertarget{3_the_adamsnovikov_term_formal_group_laws_and_the_greek_letter_construction}{}\subsubsection*{{3. The Adams-Novikov $E_2$-term, Formal Group Laws, and the Greek Letter Construction}}\label{3_the_adamsnovikov_term_formal_group_laws_and_the_greek_letter_construction} \begin{itemize}% \item [[formal group law]] \item [[Lazard ring]] \item [[Greek letter construction]] \end{itemize} \hypertarget{4_more_formal_group_law_theory_moravas_point_of_view_and_the_chromatic_spectral_sequence}{}\subsubsection*{{4. More formal group law theory, Morava's point of view, and the Chromatic Spectral Sequence}}\label{4_more_formal_group_law_theory_moravas_point_of_view_and_the_chromatic_spectral_sequence} \begin{itemize}% \item [[Brown-Peterson cohomology]] \item [[p-typical formal group law]] \item [[height of a formal group]] \item [[chromatic spectral sequence]] \end{itemize} \hypertarget{5_unstable_homotopy_groups_and_the_ehp_spectral_sequence}{}\subsubsection*{{5. Unstable homotopy groups and the EHP spectral sequence}}\label{5_unstable_homotopy_groups_and_the_ehp_spectral_sequence} \begin{itemize}% \item [[EHP spectral sequence]] \end{itemize} \hypertarget{chapter_2_setting_up_the_adams_spectral_sequence}{}\subsection*{{Chapter 2. Setting up the Adams Spectral sequence}}\label{chapter_2_setting_up_the_adams_spectral_sequence} \hypertarget{1_the_classical_adams_spectral_sequence}{}\subsubsection*{{1. The classical Adams spectral sequence}}\label{1_the_classical_adams_spectral_sequence} \begin{itemize}% \item [[exact couple]] \item [[spectral sequence]] \item [[Adams resolution]] \item [[Adams spectral sequence]] \item [[Eilenberg-MacLane spectrum]], [[ordinary cohomology]] \item [[inverse limit]] \item [[p-completion]] \end{itemize} \hypertarget{2_the_adams_spectral_sequence_based_on_a_generalized_homology_theory}{}\subsubsection*{{2. The Adams spectral sequence based on a generalized homology theory}}\label{2_the_adams_spectral_sequence_based_on_a_generalized_homology_theory} \begin{itemize}% \item [[commutative Hopf algebroid]] structure on [[Steenrod algebra]] \end{itemize} \hypertarget{3_the_smash_product_pairing_and_the_generalized_connecting_homomorphism}{}\subsubsection*{{3. The smash product pairing and the Generalized connecting homomorphism}}\label{3_the_smash_product_pairing_and_the_generalized_connecting_homomorphism} \begin{itemize}% \item [[connecting homomorphism]] \end{itemize} \hypertarget{chapter_3_the_classical_adams_spectral_sequence}{}\subsection*{{Chapter 3. The Classical Adams Spectral Sequence}}\label{chapter_3_the_classical_adams_spectral_sequence} \begin{itemize}% \item [[classical Adams spectral sequence]] \end{itemize} \hypertarget{1_the_steenrod_algebra_and_some_easy_calculuation}{}\subsubsection*{{1. The Steenrod algebra and some easy calculuation}}\label{1_the_steenrod_algebra_and_some_easy_calculuation} \begin{itemize}% \item [[Hopf algebra]] structure on [[Steenrod algebra]] \item [[cobar complex]], [[cosimplicial object]] \end{itemize} \hypertarget{2_the_may_spectral_sequence}{}\subsubsection*{{2. The May spectral sequence}}\label{2_the_may_spectral_sequence} \begin{itemize}% \item [[May spectral sequence]] \item [[Massey product]] \end{itemize} \hypertarget{3_the_lambda_algebra}{}\subsubsection*{{3. The Lambda Algebra}}\label{3_the_lambda_algebra} \begin{itemize}% \item [[Lambda algebra]] \item [[EHP spectral sequence]] \end{itemize} \hypertarget{4_some_general_properties_of_}{}\subsubsection*{{4. Some general properties of $Ext$}}\label{4_some_general_properties_of_} \begin{itemize}% \item [[periodicity theorem]] \end{itemize} \hypertarget{5_survey_and_further_reading}{}\subsubsection*{{5. Survey and further reading}}\label{5_survey_and_further_reading} \hypertarget{chapter_4_theory_and_the_adamsnovikov_spectral_sequence}{}\subsection*{{Chapter 4. $B P$-Theory and the Adams-Novikov Spectral Sequence}}\label{chapter_4_theory_and_the_adamsnovikov_spectral_sequence} \begin{itemize}% \item [[Adams-Novikov spectral sequence]] \end{itemize} \hypertarget{1_quillens_theorem_and_the_structure_of_}{}\subsubsection*{{1. Quillen's theorem and the structure of $BP_\bullet(BP)$}}\label{1_quillens_theorem_and_the_structure_of_} \begin{itemize}% \item [[Quillen's theorem on MU]] \item [[Landweber-Novikov theorem]] \item [[Brown-Peterson spectrum]] \item [[p-typical formal group]] \item \href{cobordism+cohomology+theory#UniversalComplexOrientation}{universal complex orientation on MU}, [[complex orientation and MU]] \item [[Adams-Quillen theorem]] \end{itemize} \hypertarget{2_a_survey_of_theory}{}\subsubsection*{{2. A survey of $B P$-theory}}\label{2_a_survey_of_theory} \begin{itemize}% \item [[cobordism group]] \item [[Thom spectrum]] \end{itemize} \hypertarget{3_some_calculations_in_}{}\subsubsection*{{3. Some calculations in $B P_\bullet(B P)$}}\label{3_some_calculations_in_} \hypertarget{4_beginning_calculations_with_the_adamsnovikov_spectral_sequence}{}\subsubsection*{{4. Beginning calculations with the Adams-Novikov Spectral Sequence}}\label{4_beginning_calculations_with_the_adamsnovikov_spectral_sequence} \begin{itemize}% \item [[BP]]-[[Adams-Novikov spectral sequence]] \end{itemize} \hypertarget{chapter_5_the_chromatic_spectral_sequence}{}\subsection*{{Chapter 5. The Chromatic Spectral Sequence}}\label{chapter_5_the_chromatic_spectral_sequence} \hypertarget{1_the_algebraic_construction}{}\subsubsection*{{1. The algebraic construction}}\label{1_the_algebraic_construction} \begin{itemize}% \item [[chromatic spectral sequence]] \end{itemize} \hypertarget{2__and_hopf_invariant_one}{}\subsubsection*{{2. $Ext^1(B P_\bullet/I_n)$ and Hopf Invariant One}}\label{2__and_hopf_invariant_one} \begin{itemize}% \item [[Hopf invariant one]] \end{itemize} \hypertarget{3__and_the_homomorphism}{}\subsubsection*{{3. $Ext(M^1)$ and the $J$-Homomorphism}}\label{3__and_the_homomorphism} \begin{itemize}% \item [[J-homomorphism]] \end{itemize} \hypertarget{4__and_the_thom_reduction}{}\subsubsection*{{4. $Ext^2$ and the Thom Reduction}}\label{4__and_the_thom_reduction} \hypertarget{5_periodic_families_in_}{}\subsubsection*{{5. Periodic families in $Ext^2$}}\label{5_periodic_families_in_} \hypertarget{6_elements_in__and_beyond}{}\subsubsection*{{6. Elements in $Ext^3$ and Beyond}}\label{6_elements_in__and_beyond} \hypertarget{chapter_6_morava_stabilizer_algebras}{}\subsection*{{Chapter 6. Morava Stabilizer Algebras}}\label{chapter_6_morava_stabilizer_algebras} \begin{itemize}% \item [[Morava stabilizer group]] \end{itemize} \hypertarget{chapter_7_computing_stable_homotopy_groups_with_the_adamsnovikov_spectral_sequence}{}\subsection*{{Chapter 7. Computing Stable Homotopy Groups with the Adams-Novikov Spectral Sequence}}\label{chapter_7_computing_stable_homotopy_groups_with_the_adamsnovikov_spectral_sequence} \hypertarget{appendix_1_hopf_algebras_and_hopf_algebroids}{}\subsection*{{Appendix 1. Hopf Algebras and Hopf Algebroids}}\label{appendix_1_hopf_algebras_and_hopf_algebroids} \hypertarget{1_basic_definitions}{}\subsubsection*{{1. Basic definitions}}\label{1_basic_definitions} \begin{itemize}% \item [[Hopf algebra]] \item [[commutative Hopf algebroid]] \item [[module]], [[comodule]] \item [[cotensor product]] \item [[change of rings theorem]] \end{itemize} \hypertarget{2_homological_algebra}{}\subsubsection*{{2. Homological algebra}}\label{2_homological_algebra} \begin{itemize}% \item [[derived functor]] \item [[Ext]] and [[Cotor]] for [[comodules]] \end{itemize} \hypertarget{3_some_spectral_sequences}{}\subsubsection*{{3. Some spectral sequences}}\label{3_some_spectral_sequences} \begin{itemize}% \item [[spectral sequence]] \item [[Cartan-Eilenberg spectral sequence]] \end{itemize} \hypertarget{4_massey_products}{}\subsubsection*{{4. Massey products}}\label{4_massey_products} \begin{itemize}% \item [[Massey product]] \end{itemize} \hypertarget{5_algebraic_steenrod_operations}{}\subsubsection*{{5. Algebraic Steenrod operations}}\label{5_algebraic_steenrod_operations} \begin{itemize}% \item [[Steenrod algebra]] on [[Cotor]]-groups of [[comodules]] over [[commutative Hopf algebroids]] \end{itemize} \hypertarget{appendix_2_formal_group_laws}{}\subsection*{{Appendix 2. Formal Group Laws}}\label{appendix_2_formal_group_laws} \begin{itemize}% \item [[formal group law]] \end{itemize} \hypertarget{appendix_3_table_of_homotopy_groups_of_spheres}{}\subsection*{{Appendix 3. Table of homotopy groups of spheres}}\label{appendix_3_table_of_homotopy_groups_of_spheres} category: reference \end{document}