\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Conduché functor} [[!redirects Conduche functor]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{failure_of_local_cartesian_closedness_in_cat}{Failure of local cartesian closedness in Cat}\dotfill \pageref*{failure_of_local_cartesian_closedness_in_cat} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{conduch_functors_and_2functors_to_prof}{Conduch\'e{} functors and 2-functors to Prof}\dotfill \pageref*{conduch_functors_and_2functors_to_prof} \linebreak \noindent\hyperlink{highercategorical_versions}{Higher-categorical versions}\dotfill \pageref*{highercategorical_versions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{Conduch\'e{} functor}, also called a \textbf{Conduch\'e{} fibration} or an \textbf{exponentiable functor}, is a [[functor]] which is an [[exponentiable morphism]] in [[Cat]]. (In accordance with [[Baez's law]], the notion was actually defined in \hyperlink{Giraud64}{Giraud 64} before \hyperlink{Conduche72}{Conduch\'e{}}.) This turns out to be equivalent to a certain ``factorization lifting'' property which includes both [[Grothendieck fibrations]] and opfibrations. \hypertarget{failure_of_local_cartesian_closedness_in_cat}{}\subsection*{{Failure of local cartesian closedness in Cat}}\label{failure_of_local_cartesian_closedness_in_cat} As is evident from the fact that such functors have a name, not every functor is exponentiable in [[Cat]]. In particular, although $Cat$ is [[cartesian closed category|cartesian closed]], it is not [[locally cartesian closed category|locally cartesian closed]]. It is easy to write down examples of [[colimits]] in $Cat$ that are not preserved by [[pullback]] (as they would be if pullback had a [[right adjoint]]). For instance, let $\mathbf{2}$ denote the [[walking arrow]], i.e. the [[ordinal]] $2$ regarded as a [[category]], $1$ the [[terminal category]], and $\mathbf{3} = \mathbf{2} \sqcup_1 \mathbf{2}$ the ordinal $3 = (a \to b \to c)$ regarded as a category. Then the [[pushout]] square \begin{displaymath} \itexarray{1 & \overset{}{\to} & \mathbf{2}\\ \downarrow && \downarrow\\ \mathbf{2}& \underset{}{\to} & \mathbf{3}} \end{displaymath} in the [[slice category]] $Cat/\mathbf{3}$ pulls back along the inclusion $\mathbf{2}\to \mathbf{3}$ of the arrow $(a\to c)$ to the square \begin{displaymath} \itexarray{0 & \overset{}{\to} & 1\\ \downarrow && \downarrow\\ 1& \underset{}{\to} & \mathbf{2}} \end{displaymath} which is certainly not a pushout. One way to describe the problem is that the pushout has ``created new morphisms'' that didn't exist before. But another way to describe the problem is that the inclusion $\mathbf{2}\to\mathbf{3}$ fails to notice that the morphism $(a\to c)$ acquires a new factorization in $\mathbf{3}$ which it didn't have in $\mathbf{2}$. Conduch\'e{}`s observation was that this latter failure is really the only problem that can prevent a functor from being exponentiable. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[functor]] $p\colon E\to B$ is a \textbf{strict Conduch\'e{} functor} if for any [[morphism]] $\alpha\colon a\to b$ in $E$ and any factorization $p a \overset{\beta}{\to} c \overset{\gamma}{\to} p b$ of $p \alpha$ in $B$, we have: \begin{enumerate}% \item there exists a factorization $a \overset{\tilde{\beta}}{\to} d \overset{\tilde{\gamma}}{\to} b$ of $\alpha$ in $E$ such that $p \tilde{\beta} = \beta$ and $p \tilde{\gamma} = \gamma$, and \item any two such factorizations in $E$ are connected by a [[zigzag]] of commuting morphisms which map to $id_c$ in $B$. \end{enumerate} (Here, `commuting morphism' means a morphism $d \to d'$ in $E$ such that the pair of triangles in \begin{displaymath} \itexarray{ & & d & \stackrel{\gamma}{\to} & b \\ & ^\mathllap{\beta} \nearrow & \downarrow & \nearrow^\mathrlap{\gamma'} & \\ a & \underset{\beta'}{\to} & d' & & } \end{displaymath} [[commuting diagram|commute]].) The theorem is then that the following are equivalent: \begin{itemize}% \item $p$ is a Conduch\'e{} functor. \item $p$ is [[exponentiable morphism|exponentiable]] in the 1-category $Cat$. \item $p$ is exponentiable in the [[strict 2-category]] $Cat$. \end{itemize} By ``exponentiable in the strict 2-category $Cat$'' we mean that pullback along $p$ has a strict right 2-adjoint (i.e.~a $Cat$-enriched right adjoint). Of course, this implies ordinary exponentiability in the 1-category $Cat$, while the converse follows via an argument involving [[cotensors]] with $\mathbf{2}$ in $Cat$. For exponentiability in the weak [[2-category]] $Cat$, in the sense of pullback having a weak/pseudo 2-adjoint, we can simply weaken the condition. We say that $p\colon E\to B$ is a \textbf{(weak) Conduch\'e{} functor} if for any morphism $\alpha\colon a\to b$ in $E$ and any factorization $p a \overset{\beta}{\to} c \overset{\gamma}{\to} p b$ of $p \alpha$ in $B$, we have: \begin{enumerate}% \item there exists a factorization $a \overset{\tilde{\beta}}{\to} d \overset{\tilde{\gamma}}{\to} b$ of $\alpha$ in $E$, and an isomorphism $p d \cong c$, such that modulo this isomorphism $p \tilde{\beta} = \beta$ and $p \tilde{\gamma} = \gamma$, and \item any two such factorizations in $E$ are connected by a zigzag of commuting morphisms which map to isomorphisms in $B$. \end{enumerate} A functor can then be shown to be a weak Conduch\'e{} functor if and only if it is exponentiable in the weak sense in $Cat$. \hypertarget{conduch_functors_and_2functors_to_prof}{}\subsection*{{Conduch\'e{} functors and 2-functors to Prof}}\label{conduch_functors_and_2functors_to_prof} The Conduch\'e{} criterion can be reformulated in a more conceptual way by analogy with [[Grothendieck fibrations]]. We first observe that to give a functor $p\colon E\to B$ is essentially the same as to give a normal [[lax 2-functor]] $B\to Prof$ from $B$ to the 2-category of [[profunctors]]. The latter is also known as a [[displayed category]]; see there for more on this correspondence. Specifically, given a functor $p$, we define $B\to Prof$ as follows. Each object $b\in B$ is sent to the fiber category $p^{-1}(b)$ of objects lying over $b$ and morphism lying over $1_b$. And each morphism $f\colon a\to b$ in $B$ to the profunctor $H_f\colon p^{-1}(a) ⇸ p^{-1}(b)$ for which $H_f(x,y)$ is the set of arrows $x\to y$ in $E$ lying over $f$. The lax structure maps $H_f \otimes H_g \to H_{g f}$ are given by composition in $E$. The converse construction of a functor $p$ from a normal lax 2-functor into $Prof$ is an evident generalization of the [[Grothendieck construction]]. Now we can say that: \begin{itemize}% \item $p$ is a fibration iff the corresponding functor $B\to Prof$ factors through a pseudo 2-functor landing in $Cat^{op}$, via the contravariant inclusion $Cat^{op}\to Prof$. \item Similarly, $p$ is an opfibration iff $B\to Prof$ factors through a pseudo 2-functor landing in $Cat$ via the covariant inclusion $Cat \to Prof$. \item The functor $B\to Prof$ factors through a \emph{lax} 2-functor landing in $Cat^{op}$ iff $p$ admits all ``weakly cartesian'' liftings, and dually. \item Finally, $p$ is a (strict) Conduch\'e{} functor iff the functor $B\to Prof$ is itself a pseudo 2-functor (though it may not land in $Cat$ or $Cat^{op}$). This can be seen by comparing the definition of the tensor product of profunctors with the explicit description in terms of unique factorizations above. \end{itemize} Thus Conduch\'e{} functors into $B$ correspond to pseudofunctors from $B$, regarded as a locally discrete bicategory, to the bicategory $Prof$. However, morphisms between Conduch\'e{} functors over $B$ do not correspond to pseudonatural transformations between such pseudofunctors. To get the correct transformations, we must instead regard $B$ as a vertically discrete [[double category]], and $Prof$ as a pseudo double category with profunctors horizontally and functors vertically; then pseudo double functors $B\to Prof$ again correspond to Conduch\'e{} functors into $B$, and \emph{vertical} double transformations between them correspond to functors between Conduch\'e{} functors into $B$. More generally, the slice category $Cat/B$ is equivalent to the hom-category $Dbl_{normal,lax}(B,Prof)$, with its full subcategory consisting of Conduch\'e{} functors corresponding to the pseudo double functors. \hypertarget{highercategorical_versions}{}\subsection*{{Higher-categorical versions}}\label{highercategorical_versions} Non-strict Conduch\'e{} functors and [[Street fibrations]] may be equivalently characterized by an ``up-to-iso'' version of the above constructions using [[essential fibers]]. \hyperlink{AyalaFrancis}{Ayala and Francis} prove an analogous characterization of exponentiable [[(∞,1)-functors]]. The [[(∞,1)-category theory|(∞,1)-categorical context]] eliminates the ``level-shifting'' in the characterization via $Prof$ (i.e. the presence of a [[bicategory]] [[Prof]] when discussing only exponentiable 1-functors). Thus, there is an [[(∞,1)-category]] [[(∞,1)Prof]] such that exponentiable $(\infty,1)$-functors into an $(\infty,1)$-category $B$ correspond to $(\infty,1)$-functors $B\to (\infty,1)Prof$. As in the 1-categorical case, ordinary $(\infty,1)$-transformations between functors $B\to (\infty,1)Prof$ do not give the correct maps between exponentiable $(\infty,1)$-functors over $B$; we need to instead regard $(\infty,1)Prof$ as a sort of ``$(\infty,1)$-double category''. Ayala and Francis consider only the vertically-invertible fragment of this $(\infty,1)$-double category, which can be represented as a functor from an $\infty$-groupoid to an $(\infty,1)$-category (a sort of [[proarrow equipment]] with all 2-cells and all 1-cells in the domain invertible); this is what they call a ``flagged'' $(\infty,1)$-category and is also what is represented by a non-complete [[Segal space]]. Of course, restricting to the vertically-invertible fragment of $(\infty,1)Prof$ also restricts what it classifies to the $\infty$-groupoid of exponentiable $(\infty,1)$-functors over $B$ rather than the whole $(\infty,1)$-category thereof. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The above considerations show that any Grothendieck fibration \emph{or} opfibration is a (strict) Conduch\'e{} functor, while any [[Street fibration]] or opfibration is a non-strict Conduch\'e{} functor. \item If $\mathbf{2}$ denotes the [[interval category]], then any normal lax functor out of $\mathbf{2}$ is necessarily pseudo, since there are no composable pairs of nonidentity arrows in $\mathbf{2}$. It follows that, as pointed out by Jean Benabou, \emph{any} functor with codomain $\mathbf{2}$ is a Conduch\'e{} functor. Note that functors with codomain $\mathbf{2}$ can also be identified with [[profunctors]], the two fiber categories being the source and target of the corresponding profunctor. \item As with [[exponentiable morphisms]] in any category, Conduch\'e{} functors are closed under composition. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[J. Giraud]], \emph{M\'e{}thode de la descente}, Bull. Math. Soc. M\'e{}moire \textbf{2} (1964). (\href{http://www.numdam.org/numdam-bin/item?id=MSMF_1964__2__R3_0}{numdam}) \item [[F. Conduché]], \emph{Au sujet de l'existence d'adjoints \`a{} droite aux foncteurs `image reciproque' dans la cat\'e{}gorie des cat\'e{}gories} , C. R. Acad. Sci. Paris \textbf{275} S\'e{}rie A (1972) pp.891-894. (\href{http://gallica.bnf.fr/ark:/12148/bpt6k56191352/f19.image#}{gallica}) \end{itemize} The definitions and proofs of the above theorems, along with the 2-categorical generalization (Conduch\'e{} considered only the 1-categorical case) can also be found in \begin{itemize}% \item [[Peter Johnstone]], ``Fibrations and partial products in a 2-category'', \emph{Appl. Categ. Structures} 1 (1993), 141--179 \end{itemize} A description of the characterization in terms of lax normal functors can be found in \begin{itemize}% \item [[Ross Street]], 'Powerful functors', \href{http://www.math.mq.edu.au/~street/Pow.fun.pdf}{pdf} \end{itemize} Discrete Conduch\'e{} functors are considered in \begin{itemize}% \item [[Marta Bunge|M. Bunge]], [[Susan Niefield|S. Niefield]], \emph{Exponentiability and single universes} , JPAA \textbf{148} (2000) pp.217-250. \item [[Peter Johnstone]], \emph{A Note on Discrete Conduch\'e{} Fibrations} , TAC \textbf{5} no.1 (1999) pp.1-11. (\href{http://www.tac.mta.ca/tac/volumes/1999/n1/n1.pdf}{pdf}) \end{itemize} An analogue of Conduch\'e{} functors for [[∞-categories]], classified by maps into an ∞-category version of [[Prof]], is studied in \begin{itemize}% \item [[David Ayala]] and [[John Francis]], \emph{Fibrations of ∞-categories}, \href{https://arxiv.org/abs/1702.02681}{arxiv} \end{itemize} [[!redirects Conduché fibration]] [[!redirects Conduche fibration]] [[!redirects Conduche functor]] [[!redirects Conduche functors]] [[!redirects Conduché functor]] [[!redirects Conduché functors]] [[!redirects exponentiable functor]] [[!redirects exponentiable functors]] [[!redirects strict Conduche functors]] [[!redirects strict Conduche functors]] [[!redirects strict Conduché functor]] [[!redirects strict Conduché functors]] [[!redirects strictly exponentiable functor]] [[!redirects strictly exponentiable functors]] [[!redirects powerful functor]] [[!redirects powerful functors]] [[!redirects strictly powerful functor]] [[!redirects strictly powerful functors]] [[!redirects Conduché ∞-fibration]] [[!redirects Conduche ∞-fibration]] [[!redirects Conduche ∞-functor]] [[!redirects Conduche ∞-functors]] [[!redirects Conduché ∞-functor]] [[!redirects Conduché ∞-functors]] [[!redirects exponentiable ∞-functor]] [[!redirects exponentiable ∞-functors]] [[!redirects Conduché infinity-fibration]] [[!redirects Conduche infinity-fibration]] [[!redirects Conduche infinity-functor]] [[!redirects Conduche infinity-functors]] [[!redirects Conduché infinity-functor]] [[!redirects Conduché infinity-functors]] [[!redirects exponentiable infinity-functor]] [[!redirects exponentiable infinity-functors]] \end{document}